Suppr超能文献

使用可穿戴惯性传感器预测康复期间的功能独立性测量得分

Predicting Functional Independence Measure Scores During Rehabilitation with Wearable Inertial Sensors.

作者信息

Sprint Gina, Cook Diane J, Weeks Douglas L, Borisov Vladimir

机构信息

Department of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99163 USA.

St. Luke's Rehabilitation Institute, Spokane, WA, 99202 USA.

出版信息

IEEE Access. 2015;3:1350-1366. doi: 10.1109/ACCESS.2015.2468213. Epub 2015 Aug 26.

Abstract

Evaluating patient progress and making discharge decisions regarding inpatient medical rehabilitation rely upon standard clinical assessments administered by trained clinicians. Wearable inertial sensors can offer more objective measures of patient movement and progress. We undertook a study to investigate the contribution of wearable sensor data to predict discharge functional independence measure (FIM) scores for 20 patients at an inpatient rehabilitation facility. The FIM utilizes a 7-point ordinal scale to measure patient independence while performing several activities of daily living, such as walking, grooming, and bathing. Wearable inertial sensor data were collected from ecological ambulatory tasks at two time points mid-stay during inpatient rehabilitation. Machine learning algorithms were trained with sensor-derived features and clinical information obtained from medical records at admission to the inpatient facility. While models trained only with clinical features predicted discharge scores well, we were able to achieve an even higher level of prediction accuracy when also including the wearable sensor-derived features. Correlations as high as 0.97 for leave-one-out cross validation predicting discharge FIM motor scores are reported.

摘要

评估患者进展情况并就住院医疗康复做出出院决定,依赖于经过培训的临床医生进行的标准临床评估。可穿戴惯性传感器能够提供关于患者运动和进展情况的更客观测量数据。我们开展了一项研究,以调查可穿戴传感器数据对一家住院康复机构中20名患者出院时功能独立性测量(FIM)评分的预测作用。FIM采用7分序数量表来衡量患者在进行多项日常生活活动(如行走、洗漱和洗澡)时的独立性。在住院康复期间的两个中途时间点,从生态动态任务中收集了可穿戴惯性传感器数据。利用传感器衍生特征以及从入住住院机构时的病历中获取的临床信息,对机器学习算法进行了训练。虽然仅使用临床特征训练的模型能够很好地预测出院评分,但当同时纳入可穿戴传感器衍生特征时,我们能够实现更高水平的预测准确性。报告显示,留一法交叉验证预测出院FIM运动评分的相关性高达0.97。

相似文献

1
Predicting Functional Independence Measure Scores During Rehabilitation with Wearable Inertial Sensors.
IEEE Access. 2015;3:1350-1366. doi: 10.1109/ACCESS.2015.2468213. Epub 2015 Aug 26.
2
Early Prediction of Poststroke Rehabilitation Outcomes Using Wearable Sensors.
Phys Ther. 2024 Feb 1;104(2). doi: 10.1093/ptj/pzad183.
3
Wearable Sensors Improve Prediction of Post-Stroke Walking Function Following Inpatient Rehabilitation.
IEEE J Transl Eng Health Med. 2022 Sep 22;10:2100711. doi: 10.1109/JTEHM.2022.3208585. eCollection 2022.
4
Measuring Changes in Gait and Vehicle Transfer Ability During Inpatient Rehabilitation with Wearable Inertial Sensors.
Proc IEEE Int Conf Pervasive Comput Commun Workshops. 2017 Mar;2017. doi: 10.1109/PERCOMW.2017.7917600. Epub 2017 May 4.
8
Prediction of stroke patients' bedroom-stay duration: machine-learning approach using wearable sensor data.
Front Bioeng Biotechnol. 2024 Jan 3;11:1285945. doi: 10.3389/fbioe.2023.1285945. eCollection 2023.
10

引用本文的文献

2
Automate, Illuminate, Predict: A Universal Framework for Integrating Wearable Sensors in Healthcare.
Digit Biomark. 2024 Aug 26;8(1):149-158. doi: 10.1159/000540492. eCollection 2024 Jan-Dec.
4
Wearable Sensors Improve Prediction of Post-Stroke Walking Function Following Inpatient Rehabilitation.
IEEE J Transl Eng Health Med. 2022 Sep 22;10:2100711. doi: 10.1109/JTEHM.2022.3208585. eCollection 2022.
5
Recent Developments in Privacy-Preserving Mining of Clinical Data.
ACM IMS Trans Data Sci. 2021 Nov;2(4). doi: 10.1145/3447774.
7
Technology-Enabled Assessment of Functional Health.
IEEE Rev Biomed Eng. 2019;12:319-332. doi: 10.1109/RBME.2018.2851500. Epub 2018 Jun 28.
8
Measuring Changes in Gait and Vehicle Transfer Ability During Inpatient Rehabilitation with Wearable Inertial Sensors.
Proc IEEE Int Conf Pervasive Comput Commun Workshops. 2017 Mar;2017. doi: 10.1109/PERCOMW.2017.7917600. Epub 2017 May 4.

本文引用的文献

1
Toward Automating Clinical Assessments: A Survey of the Timed Up and Go.
IEEE Rev Biomed Eng. 2015;8:64-77. doi: 10.1109/RBME.2015.2390646. Epub 2015 Jan 12.
3
Automated assessment of upper extremity movement impairment due to stroke.
PLoS One. 2014 Aug 6;9(8):e104487. doi: 10.1371/journal.pone.0104487. eCollection 2014.
4
Accelerometry-based berg balance scale score estimation.
IEEE J Biomed Health Inform. 2014 Jul;18(4):1114-21. doi: 10.1109/JBHI.2013.2288940. Epub 2013 Nov 6.
5
Prediction of stroke-related diagnostic and prognostic measures using robot-based evaluation.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650457. doi: 10.1109/ICORR.2013.6650457.
6
Prediction functional independence measure in hip fracture patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6421-4. doi: 10.1109/EMBC.2013.6611024.
8
Estimating Fugl-Meyer clinical scores in stroke survivors using wearable sensors.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5839-42. doi: 10.1109/IEMBS.2011.6091444.
9
Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury.
IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):341-50. doi: 10.1109/TNSRE.2011.2181537. Epub 2011 Dec 23.
10
Quantitative falls risk assessment using the timed up and go test.
IEEE Trans Biomed Eng. 2010 Dec;57(12):2918-26. doi: 10.1109/TBME.2010.2083659. Epub 2010 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验