Suppr超能文献

临床数据隐私保护挖掘的最新进展

Recent Developments in Privacy-Preserving Mining of Clinical Data.

作者信息

Desmet Chance, Cook Diane J

机构信息

Washington State University.

出版信息

ACM IMS Trans Data Sci. 2021 Nov;2(4). doi: 10.1145/3447774.

Abstract

With the dramatic increases in both the capability to collect personal data and the capability to analyze large amounts of data, increasingly sophisticated and personal insights are being drawn. These insights are valuable for clinical applications but also open up possibilities for identification and abuse of personal information. In this paper, we survey recent research on classical methods of privacy-preserving data mining. Looking at dominant techniques and recent innovations to them, we examine the applicability of these methods to the privacy-preserving analysis of clinical data. We also discuss promising directions for future research in this area.

摘要

随着收集个人数据能力和分析大量数据能力的急剧增长,人们得出了越来越复杂和个性化的见解。这些见解对临床应用很有价值,但也为个人信息的识别和滥用带来了可能性。在本文中,我们综述了关于隐私保护数据挖掘经典方法的近期研究。审视主导技术及其近期创新,我们考察了这些方法在临床数据隐私保护分析中的适用性。我们还讨论了该领域未来研究的有前景的方向。

相似文献

3
Privacy-Preserving Process Mining in Healthcare.医疗保健中的隐私保护流程挖掘。
Int J Environ Res Public Health. 2020 Mar 2;17(5):1612. doi: 10.3390/ijerph17051612.
9
A comprehensive review on privacy preserving data mining.关于隐私保护数据挖掘的全面综述。
Springerplus. 2015 Nov 12;4:694. doi: 10.1186/s40064-015-1481-x. eCollection 2015.

本文引用的文献

2
Privacy-preserving data sharing via probabilistic modeling.通过概率建模实现隐私保护数据共享。
Patterns (N Y). 2021 Jun 7;2(7):100271. doi: 10.1016/j.patter.2021.100271. eCollection 2021 Jul 9.
8
Privacy-Preserving Process Mining in Healthcare.医疗保健中的隐私保护流程挖掘。
Int J Environ Res Public Health. 2020 Mar 2;17(5):1612. doi: 10.3390/ijerph17051612.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验