Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.
Angew Chem Int Ed Engl. 2016 May 10;55(20):6023-7. doi: 10.1002/anie.201600966. Epub 2016 Apr 8.
Synthetic biology has enabled the production of many value-added chemicals via microbial fermentation. However, the problem of low product titers from recombinant pathways has limited the utility of this approach. Methods to increase metabolic flux are therefore critical to the success of metabolic engineering. Here we demonstrate that vitamin E-derived designer micelles, originally developed for use in synthetic chemistry, are biocompatible and accelerate flux through a styrene production pathway in Escherichia coli. We show that these micelles associate non-covalently with the bacterial outer-membrane and that this interaction increases membrane permeability. In addition, these micelles also accommodate both heterogeneous and organic-soluble transition metal catalysts and accelerate biocompatible cyclopropanation in vivo. Overall, this work demonstrates that these surfactants hold great promise for further application in the field of synthetic biotechnology, and for expanding the types of molecules that can be readily accessed from renewable resources via the combination of microbial fermentation and biocompatible chemistry.
合成生物学通过微生物发酵生产了许多有价值的化学品。然而,由于重组途径的产物滴度低,该方法的应用受到限制。因此,增加代谢通量的方法对于代谢工程的成功至关重要。在这里,我们证明了最初用于合成化学的维生素 E 衍生的设计胶束是生物相容的,并加速了大肠杆菌中苯乙烯生产途径的通量。我们表明,这些胶束与细菌外膜非共价结合,这种相互作用增加了膜的通透性。此外,这些胶束还可以容纳非均相和有机可溶性过渡金属催化剂,并在体内加速生物相容的环丙烷化反应。总的来说,这项工作表明,这些表面活性剂在合成生物技术领域有很大的应用前景,并为通过微生物发酵和生物相容化学的结合,从可再生资源中更容易获得的分子类型提供了更多的可能性。