Suppr超能文献

Effect of spatial configuration of an extended nonlinear Kierstead-Slobodkin reaction-transport model with adaptive numerical scheme.

作者信息

Owolabi Kolade M, Patidar Kailash C

机构信息

Department of Mathematics and Applied Mathematics, University of the Western Cape, Bellville, Republic of South Africa.

出版信息

Springerplus. 2016 Mar 9;5:303. doi: 10.1186/s40064-016-1941-y. eCollection 2016.

Abstract

In this paper, we consider the numerical simulations of an extended nonlinear form of Kierstead-Slobodkin reaction-transport system in one and two dimensions. We employ the popular fourth-order exponential time differencing Runge-Kutta (ETDRK4) schemes proposed by Cox and Matthew (J Comput Phys 176:430-455, 2002), that was modified by Kassam and Trefethen (SIAM J Sci Comput 26:1214-1233, 2005), for the time integration of spatially discretized partial differential equations. We demonstrate the supremacy of ETDRK4 over the existing exponential time differencing integrators that are of standard approaches and provide timings and error comparison. Numerical results obtained in this paper have granted further insight to the question 'What is the minimal size of the spatial domain so that the population persists?' posed by Kierstead and Slobodkin (J Mar Res 12:141-147, 1953), with a conclusive remark that the population size increases with the size of the domain. In attempt to examine the biological wave phenomena of the solutions, we present the numerical results in both one- and two-dimensional space, which have interesting ecological implications. Initial data and parameter values were chosen to mimic some existing patterns.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aae8/4783321/67ad42eb3568/40064_2016_1941_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验