Revathi V M, Balasubramaniam P
Department of Mathematics, Gandhigram Rural Institute - Deemed University, Gandhigram, Tamilnadu 624 302 India.
Cogn Neurodyn. 2016 Apr;10(2):135-147. doi: 10.1007/s11571-015-9371-z. Epub 2016 Jan 8.
In this paper, the [Formula: see text] filtering problem is treated for N coupled genetic oscillator networks with time-varying delays and extrinsic molecular noises. Each individual genetic oscillator is a complex dynamical network that represents the genetic oscillations in terms of complicated biological functions with inner or outer couplings denote the biochemical interactions of mRNAs, proteins and other small molecules. Throughout the paper, first, by constructing appropriate delay decomposition dependent Lyapunov-Krasovskii functional combined with reciprocal convex approach, improved delay-dependent sufficient conditions are obtained to ensure the asymptotic stability of the filtering error system with a prescribed [Formula: see text] performance. Second, based on the above analysis, the existence of the designed [Formula: see text] filters are established in terms of linear matrix inequalities with Kronecker product. Finally, numerical examples including a coupled Goodwin oscillator model are inferred to illustrate the effectiveness and less conservatism of the proposed techniques.
在本文中,研究了具有时变延迟和外在分子噪声的N个耦合遗传振荡器网络的[公式:见正文]滤波问题。每个个体遗传振荡器都是一个复杂的动态网络,它通过具有内部或外部耦合的复杂生物学功能来表示遗传振荡,这些耦合表示mRNA、蛋白质和其他小分子的生化相互作用。在整篇论文中,首先,通过构造适当的依赖延迟分解的Lyapunov-Krasovskii泛函并结合倒数凸方法,得到了改进的依赖延迟的充分条件,以确保具有规定[公式:见正文]性能的滤波误差系统的渐近稳定性。其次,基于上述分析,利用克罗内克积的线性矩阵不等式建立了所设计的[公式:见正文]滤波器的存在性。最后,通过包括耦合古德温振荡器模型在内的数值例子,说明了所提技术的有效性和较少的保守性。