Suppr超能文献

具有时变延迟的遗传振荡器网络的[公式:见原文]滤波分析的延迟分解方法。

Delay decomposition approach to [Formula: see text] filtering analysis of genetic oscillator networks with time-varying delays.

作者信息

Revathi V M, Balasubramaniam P

机构信息

Department of Mathematics, Gandhigram Rural Institute - Deemed University, Gandhigram, Tamilnadu 624 302 India.

出版信息

Cogn Neurodyn. 2016 Apr;10(2):135-147. doi: 10.1007/s11571-015-9371-z. Epub 2016 Jan 8.

Abstract

In this paper, the [Formula: see text] filtering problem is treated for N coupled genetic oscillator networks with time-varying delays and extrinsic molecular noises. Each individual genetic oscillator is a complex dynamical network that represents the genetic oscillations in terms of complicated biological functions with inner or outer couplings denote the biochemical interactions of mRNAs, proteins and other small molecules. Throughout the paper, first, by constructing appropriate delay decomposition dependent Lyapunov-Krasovskii functional combined with reciprocal convex approach, improved delay-dependent sufficient conditions are obtained to ensure the asymptotic stability of the filtering error system with a prescribed [Formula: see text] performance. Second, based on the above analysis, the existence of the designed [Formula: see text] filters are established in terms of linear matrix inequalities with Kronecker product. Finally, numerical examples including a coupled Goodwin oscillator model are inferred to illustrate the effectiveness and less conservatism of the proposed techniques.

摘要

在本文中,研究了具有时变延迟和外在分子噪声的N个耦合遗传振荡器网络的[公式:见正文]滤波问题。每个个体遗传振荡器都是一个复杂的动态网络,它通过具有内部或外部耦合的复杂生物学功能来表示遗传振荡,这些耦合表示mRNA、蛋白质和其他小分子的生化相互作用。在整篇论文中,首先,通过构造适当的依赖延迟分解的Lyapunov-Krasovskii泛函并结合倒数凸方法,得到了改进的依赖延迟的充分条件,以确保具有规定[公式:见正文]性能的滤波误差系统的渐近稳定性。其次,基于上述分析,利用克罗内克积的线性矩阵不等式建立了所设计的[公式:见正文]滤波器的存在性。最后,通过包括耦合古德温振荡器模型在内的数值例子,说明了所提技术的有效性和较少的保守性。

相似文献

1
Delay decomposition approach to [Formula: see text] filtering analysis of genetic oscillator networks with time-varying delays.
Cogn Neurodyn. 2016 Apr;10(2):135-147. doi: 10.1007/s11571-015-9371-z. Epub 2016 Jan 8.
2
Synchronization criteria of discrete-time complex networks with time-varying delays and parameter uncertainties.
Cogn Neurodyn. 2014 Jun;8(3):199-215. doi: 10.1007/s11571-013-9272-y. Epub 2013 Nov 5.
3
Finite-gain [Formula: see text] stability from disturbance to output of a class of time delay system.
J Inequal Appl. 2017;2017(1):18. doi: 10.1186/s13660-016-1290-y. Epub 2017 Jan 13.
4
Further results on delay-range-dependent stability with additive time-varying delay systems.
ISA Trans. 2014 Mar;53(2):258-66. doi: 10.1016/j.isatra.2013.10.004. Epub 2013 Nov 7.
6
Global asymptotic stability of complex-valued neural networks with additive time-varying delays.
Cogn Neurodyn. 2017 Jun;11(3):293-306. doi: 10.1007/s11571-017-9429-1. Epub 2017 Mar 18.
7
Admissible Delay Upper Bounds for Global Asymptotic Stability of Neural Networks With Time-Varying Delays.
IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5319-5329. doi: 10.1109/TNNLS.2018.2797279. Epub 2018 Feb 16.
8
Stochastic Finite-Time H State Estimation for Discrete-Time Semi-Markovian Jump Neural Networks With Time-Varying Delays.
IEEE Trans Neural Netw Learn Syst. 2020 Dec;31(12):5456-5467. doi: 10.1109/TNNLS.2020.2968074. Epub 2020 Nov 30.
9
Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach.
Neural Netw. 2014 Jun;54:57-69. doi: 10.1016/j.neunet.2014.02.012. Epub 2014 Mar 3.
10
Exponential State Estimation for Memristor-Based Discrete-Time BAM Neural Networks With Additive Delay Components.
IEEE Trans Cybern. 2020 Oct;50(10):4281-4292. doi: 10.1109/TCYB.2019.2902864. Epub 2019 Mar 20.

本文引用的文献

1
Power-rate synchronization of coupled genetic oscillators with unbounded time-varying delay.
Cogn Neurodyn. 2015 Oct;9(5):549-59. doi: 10.1007/s11571-015-9344-2. Epub 2015 May 20.
2
Synthesising gene clock with toggle switch and oscillator.
IET Syst Biol. 2015 Jun;9(3):88-94. doi: 10.1049/iet-syb.2014.0022.
3
Passive synchronization for Markov jump genetic oscillator networks with time-varying delays.
Math Biosci. 2015 Apr;262:80-7. doi: 10.1016/j.mbs.2015.01.012. Epub 2015 Feb 2.
4
Intercellular delay regulates the collective period of repressively coupled gene regulatory oscillator networks.
IEEE Trans Automat Contr. 2014 Jan;59(1):211-216. doi: 10.1109/TAC.2013.2270072.
5
Collective cell movement promotes synchronization of coupled genetic oscillators.
Biophys J. 2014 Jul 15;107(2):514-526. doi: 10.1016/j.bpj.2014.06.011.
8
Modeling synthetic gene oscillators.
Math Biosci. 2012 Mar;236(1):1-15. doi: 10.1016/j.mbs.2012.01.001. Epub 2012 Jan 18.
9
PDF receptor expression reveals direct interactions between circadian oscillators in Drosophila.
J Comp Neurol. 2010 Jun 1;518(11):1925-45. doi: 10.1002/cne.22311.
10
Internal noise-driven circadian oscillator in Drosophila.
Biophys Chem. 2009 Dec;145(2-3):57-63. doi: 10.1016/j.bpc.2009.08.009. Epub 2009 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验