Taylor Erik N, Hoffman Matthew P, Barefield David Y, Aninwene George E, Abrishamchi Aurash D, Lynch Thomas L, Govindan Suresh, Osinska Hanna, Robbins Jeffrey, Sadayappan Sakthivel, Gilbert Richard J
Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA.
Health Sciences Division, Department of Cell and Molecular Physiology, Loyola University of Chicago, Maywood, IL.
J Am Heart Assoc. 2016 Mar 15;5(3):e002836. doi: 10.1161/JAHA.115.002836.
The geometric organization of myocytes in the ventricular wall comprises the structural underpinnings of cardiac mechanical function. Cardiac myosin binding protein-C (MYBPC3) is a sarcomeric protein, for which phosphorylation modulates myofilament binding, sarcomere morphology, and myocyte alignment in the ventricular wall. To elucidate the mechanisms by which MYBPC3 phospho-regulation affects cardiac tissue organization, we studied ventricular myoarchitecture using generalized Q-space imaging (GQI). GQI assessed geometric phenotype in excised hearts that had undergone transgenic (TG) modification of phospho-regulatory serine sites to nonphosphorylatable alanines (MYBPC3(AllP-/(t/t))) or phospho-mimetic aspartic acids (MYBPC3(AllP+/(t/t))).
Myoarchitecture in the wild-type (MYBPC3(WT)) left-ventricle (LV) varied with transmural position, with helix angles ranging from -90/+90 degrees and contiguous circular orientation from the LV mid-myocardium to the right ventricle (RV). Whereas MYBPC3(AllP+/(t/t)) hearts were not architecturally distinct from MYBPC3(WT), MYBPC3(AllP-/(t/t)) hearts demonstrated a significant reduction in LV transmural helicity. Null MYBPC3((t/t)) hearts, as constituted by a truncated MYBPC3 protein, demonstrated global architectural disarray and loss in helicity. Electron microscopy was performed to correlate the observed macroscopic architectural changes with sarcomere ultrastructure and demonstrated that impaired phosphorylation of MYBPC3 resulted in modifications of the sarcomere aspect ratio and shear angle. The mechanical effect of helicity loss was assessed through a geometric model relating cardiac work to ejection fraction, confirming the mechanical impairments observed with echocardiography.
We conclude that phosphorylation of MYBPC3 contributes to the genesis of ventricular wall geometry, linking myofilament biology with multiscale cardiac mechanics and myoarchitecture.
心室壁中肌细胞的几何结构构成了心脏机械功能的结构基础。心肌肌球蛋白结合蛋白-C(MYBPC3)是一种肌节蛋白,其磷酸化可调节肌丝结合、肌节形态以及心室壁中肌细胞的排列。为了阐明MYBPC3磷酸化调节影响心脏组织结构的机制,我们使用广义Q空间成像(GQI)研究了心室肌结构。GQI评估了切除心脏的几何表型,这些心脏的磷酸化调节丝氨酸位点已通过转基因(TG)修饰为不可磷酸化的丙氨酸(MYBPC3(AllP - /(t/t)))或磷酸化模拟天冬氨酸(MYBPC3(AllP + /(t/t)))。
野生型(MYBPC3(WT))左心室(LV)的肌结构随透壁位置而变化,螺旋角范围为-90 / + 90度,从LV心肌中层到右心室(RV)呈连续的环形方向。虽然MYBPC3(AllP + /(t/t))心脏在结构上与MYBPC3(WT)没有区别,但MYBPC3(AllP - /(t/t))心脏的LV透壁螺旋度显著降低。由截短的MYBPC3蛋白构成的无效MYBPC3((t/t))心脏表现出整体结构紊乱和螺旋度丧失。进行电子显微镜检查以将观察到的宏观结构变化与肌节超微结构相关联,并证明MYBPC3磷酸化受损导致肌节长宽比和剪切角的改变。通过将心脏功与射血分数相关联的几何模型评估螺旋度丧失的机械效应,证实了超声心动图观察到的机械损伤。
我们得出结论,MYBPC3磷酸化有助于心室壁几何结构的形成,将肌丝生物学与多尺度心脏力学和肌结构联系起来。