Suppr超能文献

Tempol对丁硫氨酸亚砜胺诱导的海马来源HT22细胞线粒体损伤的保护作用。

Protective Effect of Tempol on Buthionine Sulfoximine-Induced Mitochondrial Impairment in Hippocampal Derived HT22 Cells.

作者信息

Salvi Ankita, Patki Gaurav, Khan Eisha, Asghar Mohammad, Salim Samina

机构信息

Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.

出版信息

Oxid Med Cell Longev. 2016;2016:5059043. doi: 10.1155/2016/5059043. Epub 2016 Mar 16.

Abstract

Using a simulated oxidative stress model of hippocampus-derived immortalized cell line (HT22), we report that prooxidant buthionine sulfoximine (BSO, 1 mM, 14 h), without adversely affecting cell viability or morphology, induced oxidative stress by inhibiting glutathione synthesis. BSO treatment also significantly reduced superoxide dismutase (SOD) activity (p < 0.05) and significantly lowered total antioxidant capacity (p < 0.001) in HT22 cells when compared to vehicle treated control cells. Antioxidant tempol, a piperidine nitroxide considered a SOD mimetic, reversed BSO-induced decline in SOD activity (p < 0.01) and also increased BSO-induced decline in total antioxidant capacity (p < 0.05). Interestingly, BSO treatment significantly reduced mitochondrial oxygen consumption (p < 0.05), decreased mitochondrial membrane potential (p < 0.05), and lowered ATP production (p < 0.05) when compared to vehicle treated control cells, collectively indicative of mitochondrial impairment. Antioxidant tempol treatment mitigated all three indicators of mitochondrial impairment. We postulate that BSO-induced oxidative stress in HT22 cells caused mitochondrial impairment, and tempol by increasing SOD activity and improving antioxidant capacity presumably protected the cells from BSO-induced mitochondrial impairment. In conclusion, present study provides an interesting simulation of oxidative stress in hippocampal cells, which will serve as an excellent model to study mitochondrial functions.

摘要

利用海马来源的永生化细胞系(HT22)的模拟氧化应激模型,我们发现促氧化剂丁硫氨酸亚砜胺(BSO,1 mM,14小时)在不影响细胞活力或形态的情况下,通过抑制谷胱甘肽合成诱导氧化应激。与用载体处理的对照细胞相比,BSO处理还显著降低了HT22细胞中的超氧化物歧化酶(SOD)活性(p < 0.05),并显著降低了总抗氧化能力(p < 0.001)。抗氧化剂tempol是一种被认为具有SOD模拟作用的哌啶氮氧化物,它逆转了BSO诱导的SOD活性下降(p < 0.01),并增加了BSO诱导的总抗氧化能力下降(p < 0.05)。有趣的是,与用载体处理的对照细胞相比,BSO处理显著降低了线粒体氧消耗(p < 0.05),降低了线粒体膜电位(p < 0.05),并降低了ATP生成(p < 0.05),这些共同表明线粒体受损。抗氧化剂tempol处理减轻了线粒体受损的所有三个指标。我们推测,BSO诱导的HT22细胞氧化应激导致线粒体受损,而tempol通过增加SOD活性和提高抗氧化能力,可能保护细胞免受BSO诱导的线粒体损伤。总之,本研究提供了一个有趣的海马细胞氧化应激模拟,这将成为研究线粒体功能的优秀模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5d9/4812466/9ee4ac818661/OMCL2016-5059043.001.jpg

相似文献

1
Protective Effect of Tempol on Buthionine Sulfoximine-Induced Mitochondrial Impairment in Hippocampal Derived HT22 Cells.
Oxid Med Cell Longev. 2016;2016:5059043. doi: 10.1155/2016/5059043. Epub 2016 Mar 16.
2
The responses of Ht22 cells to oxidative stress induced by buthionine sulfoximine (BSO).
BMC Neurosci. 2005 Feb 12;6:10. doi: 10.1186/1471-2202-6-10.
6
Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats.
Behav Brain Res. 2010 Apr 2;208(2):545-52. doi: 10.1016/j.bbr.2009.12.039. Epub 2010 Jan 12.
7
Protection from oxidative insult in glutathione depleted lens epithelial cells.
Exp Eye Res. 1999 Jan;68(1):117-27. doi: 10.1006/exer.1998.0606.
8

引用本文的文献

2
Effect of Low Concentration of Nitroxides on SH-SY5Y Cells Transfected with the Tau Protein.
Int J Mol Sci. 2023 Nov 23;24(23):16675. doi: 10.3390/ijms242316675.
3
Ginkgo Biloba and Long COVID: In Vivo and In Vitro Models for the Evaluation of Nanotherapeutic Efficacy.
Pharmaceutics. 2023 May 22;15(5):1562. doi: 10.3390/pharmaceutics15051562.
4
The Role of ROS as a Double-Edged Sword in (In)Fertility: The Impact of Cancer Treatment.
Cancers (Basel). 2022 Mar 21;14(6):1585. doi: 10.3390/cancers14061585.
5
Density-functional theory of the catnip molecule, nepetalactone.
Mol Cell Biochem. 2022 Apr;477(4):1139-1153. doi: 10.1007/s11010-022-04366-8. Epub 2022 Jan 25.
7
Renal Dopamine Oxidation and Inflammation in High Salt Fed Rats.
J Am Heart Assoc. 2020 Jan 7;9(1):e014977. doi: 10.1161/JAHA.119.014977. Epub 2019 Dec 27.
8
9
Modulating Oxidative Stress Relieves Stress-Induced Behavioral and Cognitive Impairments in Rats.
Int J Neuropsychopharmacol. 2017 Jul 1;20(7):550-561. doi: 10.1093/ijnp/pyx017.

本文引用的文献

1
The role of mitochondrial DNA mutation on neurodegenerative diseases.
Exp Mol Med. 2015 Mar 13;47(3):e150. doi: 10.1038/emm.2014.122.
2
Mitochondrial form and function.
Nature. 2014 Jan 16;505(7483):335-43. doi: 10.1038/nature12985.
3
Mitochondria impact brain function and cognition.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):7-8. doi: 10.1073/pnas.1321881111. Epub 2013 Dec 23.
7
Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression.
J Clin Invest. 2013 Mar;123(3):1068-81. doi: 10.1172/JCI64264. Epub 2013 Feb 15.
8
Mitochondrial dysfunction and the inflammatory response.
Mitochondrion. 2013 Mar;13(2):106-18. doi: 10.1016/j.mito.2013.01.003. Epub 2013 Jan 16.
9
Mitochondrial fission, fusion, and stress.
Science. 2012 Aug 31;337(6098):1062-5. doi: 10.1126/science.1219855.
10
Exercise prevents sleep deprivation-associated anxiety-like behavior in rats: potential role of oxidative stress mechanisms.
Behav Brain Res. 2011 Oct 31;224(2):233-40. doi: 10.1016/j.bbr.2011.05.010. Epub 2011 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验