Department of Chemistry, University of California , Berkeley, California 94720, United States.
Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
Nano Lett. 2016 May 11;16(5):3078-84. doi: 10.1021/acs.nanolett.6b00233. Epub 2016 Apr 12.
Understanding of the atomic structure and stability of nanowires (NWs) is critical for their applications in nanotechnology, especially when the diameter of NWs reduces to ultrathin scale (1-2 nm). Here, using aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM), we report a detailed atomic structure study of the ultrathin Au NWs, which are synthesized using a silane-mediated approach. The NWs contain large amounts of generalized stacking fault defects. These defects evolve upon sustained electron exposure, and simultaneously the NWs undergo necking and breaking. Quantitative strain analysis reveals the key role of strain in the breakdown process. Besides, ligand-like morphology is observed at the surface of the NWs, indicating the possibility of using AC-HRTEM for surface ligand imaging. Moreover, the coalescence dynamic of ultrathin Au NWs is demonstrated by in situ observations. This work provides a comprehensive understanding of the structure of ultrathin metal NWs at atomic-scale and could have important implications for their applications.
理解纳米线(NWs)的原子结构和稳定性对于它们在纳米技术中的应用至关重要,特别是当 NWs 的直径减小到超精细尺度(1-2nm)时。在这里,我们使用了经过像差校正的高分辨率透射电子显微镜(AC-HRTEM),对通过硅烷介导方法合成的超薄 AuNWs 的原子结构进行了详细的研究。NWs 中含有大量的广义层错缺陷。这些缺陷在持续的电子照射下演变,同时 NWs 经历颈缩和断裂。定量应变分析揭示了应变在击穿过程中的关键作用。此外,在 NWs 的表面观察到类似配体的形态,表明了使用 AC-HRTEM 进行表面配体成像的可能性。此外,还通过原位观察证明了超薄 AuNWs 的合并动力学。这项工作提供了对原子尺度上超薄金属 NWs 结构的全面理解,这对于它们的应用可能具有重要意义。