Doshi Urmi, Holliday Michael J, Eisenmesser Elan Z, Hamelberg Donald
Department of Chemistry, Georgia State University, Atlanta, GA 30302;
Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045.
Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4735-40. doi: 10.1073/pnas.1523573113. Epub 2016 Apr 11.
Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue-residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general.
对于构象动力学如何在识别和催化的变构调节中协调功能的详细理解仍然不明确。在这里,我们在明确的溶剂中使用多微秒时长的原子分子动力学模拟环孢素A(CypA)并进行核磁共振(NMR)实验。我们用粗粒度方法分析大量随时间变化的多维数据,并通过根据残基 - 残基接触定义动力学来描绘各个宏观状态内的关键动力学特征。观察到底物结合的影响在距活性位点超过15埃的位置上很大程度上被感知到,这意味着其在变构中的重要性。通过核磁共振实验,我们证实了该远端区域中一个动态的残基簇直接与活性位点耦合。此外,发现残基间接触的动态网络是耦合的且在时间上分散,范围跨越4到5个数量级。最后,使用网络中心性度量,我们展示了CypA残基在底物结合、突变和催化过程中通信网络、连通性和影响力的变化。我们确定了可能在通过CypA中不同区域的通信流中充当瓶颈的关键残基,因此,这些残基可作为未来突变研究的目标。总体而言,描绘这些动力学特征以及动力学与功能的耦合对于理解酶和蛋白质中的变构调节具有至关重要的意义。