Suppr超能文献

具有高迁移率的三维氧化锌/硫化镉纳米复合材料作为倒置聚合物太阳能电池的高效电子传输层

3-Dimensional ZnO/CdS nanocomposite with high mobility as an efficient electron transport layer for inverted polymer solar cells.

作者信息

Wang Yilin, Fu Haiyan, Wang Ying, Tan Licheng, Chen Lie, Chen Yiwang

机构信息

College of Chemistry/Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.

出版信息

Phys Chem Chem Phys. 2016 Apr 28;18(17):12175-82. doi: 10.1039/c6cp00209a.

Abstract

The inclusions of solution-processed ZnO electron transport layers (ETLs) of inverted polymer solar cells can lead to various surface defects, which can act as interfacial recombination centers for photogenerated charges and thereby can lead to degradation of the device performance. Three-dimensional (3D) CdS with different morphologies, such as flower-like CdS (F-CdS), branched CdS (B-CdS), and spherical CdS (S-CdS), are synthesized to modify ZnO ETLs, by effectively removing the intragap states of the ZnO nanocrystal films by forming ZnO/F-CdS, ZnO/B-CdS, and ZnO/S-CdS composite ETLs, respectively. Moreover, ZnO/CdS possesses higher electron mobility and provides a larger interface between the ETL and active layer, which is beneficial for enhancing the power conversion efficiency (PCE) of the inverted organic solar cells. In particular, a device based on a ZnO/S-CdS ETL and thieno[3,4-b]-thiophene/benzodithiophene (PTB7):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) active layer achieved a PCE of 8.0%, together with better long-term stability.

摘要

倒置聚合物太阳能电池溶液处理的氧化锌电子传输层(ETL)中的夹杂物会导致各种表面缺陷,这些缺陷可作为光生电荷的界面复合中心,从而导致器件性能下降。合成了具有不同形貌的三维(3D)硫化镉,如花朵状硫化镉(F-CdS)、分支状硫化镉(B-CdS)和球形硫化镉(S-CdS),通过分别形成ZnO/F-CdS、ZnO/B-CdS和ZnO/S-CdS复合ETL来有效去除氧化锌纳米晶体薄膜的带隙内态,从而对氧化锌ETL进行改性。此外,ZnO/CdS具有更高的电子迁移率,并在ETL与活性层之间提供更大的界面,这有利于提高倒置有机太阳能电池的功率转换效率(PCE)。特别是,基于ZnO/S-CdS ETL和噻吩并[3,4-b]噻吩/苯并二噻吩(PTB7):[6,6]-苯基-C71-丁酸甲酯(PC71BM)活性层的器件实现了8.0%的PCE,同时具有更好的长期稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验