Department of Mechanical Engineering, KAIST , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
Department of Electrical Engineering, KAIST , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
ACS Appl Mater Interfaces. 2016 May 4;8(17):10937-45. doi: 10.1021/acsami.6b02333. Epub 2016 Apr 22.
High-performance multiscale metallic transparent conductors (TCs) are demonstrated by incorporating Ag nanowire (NW) networks into microscale Ag grid structures. Highly conductive Ag grids are fabricated via direct imprinting of an Ag ion ink using a reservoir-assisted mold. In this mold, a macroscale cavity, called the "reservoir", is designed to connect to a grid-patterned cavity. The reservoir has a large cavity volume, which reduces unwanted residual layers within the grid spacings by introducing a thinner liquid film. The reservoir undergoes a large volume reduction during mold deformation, which improves ink filling within the grid-patterned cavity through deformation-induced ink injection. The multiscale metallic TCs show a sheet resistance (Rs) of <1.5 Ω/sq and a transmittance (T) of 86% at 550 nm, superior to the corresponding values of Ag NW networks (Rs of 15.6 Ω/sq at a similar T). We estimate the Rs-T performances of the Ag grids using geometrical calculations and demonstrate that their integration can enhance the opto-electrical properties of the Ag NW networks. Multiscale metallic TCs are successfully transferred and embedded into a transparent, flexible, and UV-curable polymer matrix. The embedded multiscale metallic TCs show reasonable electromechanical and chemical stability. The utility of these TCs is demonstrated by fabricating flexible organic solar cells.
通过将银纳米线(NW)网络纳入微尺度银网格结构,制备出高性能多尺度金属透明导体(TCs)。通过使用储液器辅助模具直接压印银离子墨水来制造高导电性 Ag 网格。在该模具中,设计了一个称为“储液器”的大腔体,以连接到具有网格图案的腔体。储液器具有较大的腔体体积,通过引入更薄的液膜,减少了网格间距内不需要的残留层。储液器在模具变形过程中经历了较大的体积减小,通过变形诱导的油墨注入,改善了网格图案腔体内的油墨填充。多尺度金属 TCs 的方阻(Rs)<1.5 Ω/sq,在 550nm 处的透光率(T)为 86%,优于相应的 Ag NW 网络值(Rs 为 15.6 Ω/sq,T 相似)。我们使用几何计算估计了 Ag 网格的 Rs-T 性能,并证明了它们的集成可以增强 Ag NW 网络的光电性能。多尺度金属 TCs 成功地转移并嵌入到透明、灵活和可紫外光固化的聚合物基质中。嵌入的多尺度金属 TCs 表现出合理的机电和化学稳定性。这些 TCs 的实用性通过制造柔性有机太阳能电池得到了证明。