Nishikawa Hiroki, Takata Ryo, Enomoto Hirayuki, Yoh Kazunori, Kishino Kyohei, Shimono Yoshihiro, Iwata Yoshinori, Hasegawa Kunihiro, Nakano Chikage, Nishimura Takashi, Aizawa Nobuhiro, Sakai Yoshiyuki, Ikeda Naoto, Takashima Tomoyuki, Ishii Akio, Iijima Hiroko, Nishiguchi Shuhei
Division of Hepatobiliary and Pancreatic Disease, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
Hepatol Res. 2017 Mar;47(3):E74-E84. doi: 10.1111/hepr.12724. Epub 2016 May 26.
We aimed to construct a predictive model for advanced fibrosis containing Wisteria floribunda agglutinin-positive Mac-2-binding protein (WFA -M2BP) level in patients with chronic hepatitis C (CHC) and to validate its accuracy in an independent cohort.
A total of 386 patients with CHC were retrospectively analyzed. For the purpose of this study, we formed a training set (n = 210) and a validation set (n = 176). In the training set, we investigated variables linked to the presence of advanced fibrosis using univariate and multivariate analyses. We constructed a formula for predicting advanced fibrosis and validated its accuracy in the validation cohort. Receiver operating characteristic curve (ROC) analysis was carried out for calculating the area under the ROC (AUROC).
In multivariate analyses, WFA -M2BP (P = 0.029) and prothrombin time (PT) (P = 0.018) were found to be significant predictive factors linked to the presence of advanced fibrosis; platelet count (P = 0.098) and hyaluronic acid (P = 0.078) showed borderline statistical significance for the presence of advanced fibrosis. Using these four variables (with the initials MPPH), we constructed the following formula: MPPH score = -3.584 - (0.275 × WFA -M2BP) + (0.068 × platelet count) + (0.042 × PT) - (0.005 × hyaluronic acid). In the training and validation sets, MPPH score yielded the highest AUROCs (0.87 and 0.83) for predicting advanced fibrosis among eight serum liver fibrosis markers. Similarly, in the training and validation sets, MPPH score had the highest diagnostic accuracies for predicting advanced fibrosis among eight serum variables (81.4% and 74.4%).
Our proposed MPPH scoring system can be useful for predicting advanced fibrosis in patients with CHC.
我们旨在构建一个包含紫藤凝集素阳性Mac-2结合蛋白(WFA-M2BP)水平的慢性丙型肝炎(CHC)患者晚期纤维化预测模型,并在独立队列中验证其准确性。
对386例CHC患者进行回顾性分析。为了本研究的目的,我们形成了一个训练集(n = 210)和一个验证集(n = 176)。在训练集中,我们使用单变量和多变量分析研究与晚期纤维化存在相关的变量。我们构建了一个预测晚期纤维化的公式,并在验证队列中验证其准确性。进行受试者操作特征曲线(ROC)分析以计算ROC曲线下面积(AUROC)。
在多变量分析中,发现WFA-M2BP(P = 0.029)和凝血酶原时间(PT)(P = 0.018)是与晚期纤维化存在相关的显著预测因素;血小板计数(P = 0.098)和透明质酸(P = 0.078)对晚期纤维化的存在显示出临界统计学意义。使用这四个变量(首字母为MPPH),我们构建了以下公式:MPPH评分 = -3.584 - (0.275×WFA-M2BP) + (0.068×血小板计数) + (0.042×PT) - (0.005×透明质酸)。在训练集和验证集中,MPPH评分在八种血清肝纤维化标志物中预测晚期纤维化的AUROC最高(分别为0.87和0.83)。同样,在训练集和验证集中,MPPH评分在八个血清变量中预测晚期纤维化的诊断准确性最高(分别为81.4%和74.4%)。
我们提出的MPPH评分系统可用于预测CHC患者的晚期纤维化。