Suppr超能文献

综述:用于代谢疾病建模的人类多能干细胞的基因组编辑

Minireview: Genome Editing of Human Pluripotent Stem Cells for Modeling Metabolic Disease.

作者信息

Yu Haojie, Cowan Chad A

机构信息

Department of Stem Cell and Regenerative Biology (H.Y., C.A.C.), Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138; and Center for Regenerative Medicine (C.A.C.), Massachusetts General Hospital, Boston, Massachusetts 02114.

出版信息

Mol Endocrinol. 2016 Jun;30(6):575-86. doi: 10.1210/me.2015-1290. Epub 2016 Apr 13.

Abstract

The pathophysiology of metabolic diseases such as coronary artery disease, diabetes, and obesity is complex and multifactorial. Developing new strategies to prevent or treat these diseases requires in vitro models with which researchers can extensively study the molecular mechanisms that lead to disease. Human pluripotent stem cells and their differentiated derivatives have the potential to provide an unlimited source of disease-relevant cell types and, when combined with recent advances in genome editing, make the goal of generating functional metabolic disease models, for the first time, consistently attainable. However, this approach still has certain limitations including lack of robust differentiation methods and potential off-target effects. This review describes the current progress in human pluripotent stem cell-based metabolic disease research using genome-editing technology.

摘要

诸如冠状动脉疾病、糖尿病和肥胖症等代谢性疾病的病理生理学是复杂且多因素的。开发预防或治疗这些疾病的新策略需要体外模型,借助这些模型研究人员能够广泛地探究导致疾病的分子机制。人类多能干细胞及其分化衍生物有潜力提供无限的疾病相关细胞类型来源,并且与基因组编辑方面的最新进展相结合,首次使生成功能性代谢疾病模型的目标始终得以实现。然而,这种方法仍存在一定局限性,包括缺乏可靠的分化方法以及潜在的脱靶效应。本综述描述了利用基因组编辑技术开展基于人类多能干细胞的代谢疾病研究的当前进展。

相似文献

1
Minireview: Genome Editing of Human Pluripotent Stem Cells for Modeling Metabolic Disease.
Mol Endocrinol. 2016 Jun;30(6):575-86. doi: 10.1210/me.2015-1290. Epub 2016 Apr 13.
2
Genome editing in pluripotent stem cells: research and therapeutic applications.
Biochem Biophys Res Commun. 2016 May 6;473(3):665-74. doi: 10.1016/j.bbrc.2016.02.113. Epub 2016 Feb 27.
3
Human pluripotent stem cell based islet models for diabetes research.
Best Pract Res Clin Endocrinol Metab. 2015 Dec;29(6):899-909. doi: 10.1016/j.beem.2015.10.012. Epub 2015 Oct 30.
4
Genome engineering of stem cell organoids for disease modeling.
Protein Cell. 2017 May;8(5):315-327. doi: 10.1007/s13238-016-0368-0. Epub 2017 Jan 19.
5
Modeling different types of diabetes using human pluripotent stem cells.
Cell Mol Life Sci. 2021 Mar;78(6):2459-2483. doi: 10.1007/s00018-020-03710-9. Epub 2020 Nov 26.
6
Gene Editing in Human Pluripotent Stem Cells: Recent Advances for Clinical Therapies.
Adv Exp Med Biol. 2020;1237:17-28. doi: 10.1007/5584_2019_439.
7
Modeling Cancer with Pluripotent Stem Cells.
Trends Cancer. 2016 Sep;2(9):485-494. doi: 10.1016/j.trecan.2016.07.007. Epub 2016 Aug 21.
9
Recent advances and potential applications of human pluripotent stem cell-derived pancreatic β cells.
Acta Biochim Biophys Sin (Shanghai). 2020 Jul 10;52(7):708-715. doi: 10.1093/abbs/gmaa047.
10
Genome editing of human pluripotent stem cells to generate human cellular disease models.
Dis Model Mech. 2013 Jul;6(4):896-904. doi: 10.1242/dmm.012054. Epub 2013 Jun 10.

引用本文的文献

1
Application of human iPSC-derived white, beige, and brown adipocytes for metabolic disease modeling and transplantation therapy.
Cell Transplant. 2025 Jan-Dec;34:9636897251346599. doi: 10.1177/09636897251346599. Epub 2025 Jun 19.
2
Basic and Preclinical Research for Personalized Medicine.
J Pers Med. 2021 Apr 29;11(5):354. doi: 10.3390/jpm11050354.
3
Insulin resistance in diabetes: The promise of using induced pluripotent stem cell technology.
World J Stem Cells. 2021 Mar 26;13(3):221-235. doi: 10.4252/wjsc.v13.i3.221.
4
Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells.
Int J Mol Sci. 2018 Mar 21;19(4):936. doi: 10.3390/ijms19040936.
5
Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome.
Arterioscler Thromb Vasc Biol. 2017 Nov;37(11):2038-2042. doi: 10.1161/ATVBAHA.117.309291. Epub 2017 Jul 20.

本文引用的文献

1
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.
Cell. 2015 Oct 22;163(3):759-71. doi: 10.1016/j.cell.2015.09.038. Epub 2015 Sep 25.
2
A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease.
Nat Genet. 2015 Oct;47(10):1121-1130. doi: 10.1038/ng.3396. Epub 2015 Sep 7.
3
Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy.
Nat Biotechnol. 2015 Sep;33(9):962-9. doi: 10.1038/nbt.3297. Epub 2015 Aug 3.
4
Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells.
Nat Cell Biol. 2015 Aug;17(8):994-1003. doi: 10.1038/ncb3205. Epub 2015 Jul 27.
5
Engineering Human Stem Cell Lines with Inducible Gene Knockout using CRISPR/Cas9.
Cell Stem Cell. 2015 Aug 6;17(2):233-44. doi: 10.1016/j.stem.2015.06.001. Epub 2015 Jul 2.
6
A CRISPR/Cas-Mediated Selection-free Knockin Strategy in Human Embryonic Stem Cells.
Stem Cell Reports. 2015 Jun 9;4(6):1103-11. doi: 10.1016/j.stemcr.2015.04.016. Epub 2015 May 28.
7
The impact of low-frequency and rare variants on lipid levels.
Nat Genet. 2015 Jun;47(6):589-97. doi: 10.1038/ng.3300. Epub 2015 May 11.
8
Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus.
Cell Rep. 2015 May 12;11(6):875-883. doi: 10.1016/j.celrep.2015.04.007. Epub 2015 Apr 30.
9
Genetic studies of body mass index yield new insights for obesity biology.
Nature. 2015 Feb 12;518(7538):197-206. doi: 10.1038/nature14177.
10
Small molecules enhance CRISPR genome editing in pluripotent stem cells.
Cell Stem Cell. 2015 Feb 5;16(2):142-7. doi: 10.1016/j.stem.2015.01.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验