Suppr超能文献

胰岛素抵抗和代谢综合征中诱导多能干细胞衍生的内皮细胞

Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome.

作者信息

Carcamo-Orive Ivan, Huang Ngan F, Quertermous Thomas, Knowles Joshua W

机构信息

From the Department of Medicine and Cardiovascular Institute (I.C.-O., T.Q., J.W.K.) and Department of Cardiothoracic Surgery and Cardiovascular Institute (N.F.H.), Stanford University School of Medicine, CA; and Veterans Affairs Palo Alto Health Care System, CA (N.F.H.).

出版信息

Arterioscler Thromb Vasc Biol. 2017 Nov;37(11):2038-2042. doi: 10.1161/ATVBAHA.117.309291. Epub 2017 Jul 20.

Abstract

Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations.

摘要

胰岛素抵抗会导致多种代谢和细胞异常,包括内皮功能障碍,从而增加血管疾病的风险。尽管研究导致胰岛素抵抗状态下内皮功能异常的遗传决定因素极具挑战性,但从具有详细临床表型的个体(包括准确测量胰岛素抵抗并伴有多组学数据,如基因和基因组特征)产生的诱导多能干细胞中获取内皮细胞的可能性,为研究这种关系开辟了新途径。不幸的是,一些技术障碍阻碍了这些努力。在本综述中,我们总结了用于模拟与胰岛素抵抗相关的内皮功能障碍的诱导多能干细胞衍生内皮细胞的现状,并讨论克服这些限制所面临的挑战。

相似文献

1
Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome.
Arterioscler Thromb Vasc Biol. 2017 Nov;37(11):2038-2042. doi: 10.1161/ATVBAHA.117.309291. Epub 2017 Jul 20.
2
Differentiation, Evaluation, and Application of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells.
Arterioscler Thromb Vasc Biol. 2017 Nov;37(11):2014-2025. doi: 10.1161/ATVBAHA.117.309962. Epub 2017 Oct 12.
3
Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts.
Arterioscler Thromb Vasc Biol. 2014 Jan;34(1):177-86. doi: 10.1161/ATVBAHA.113.302598. Epub 2013 Oct 24.
4
Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells.
Nat Cell Biol. 2015 Aug;17(8):994-1003. doi: 10.1038/ncb3205. Epub 2015 Jul 27.
7
Human Induced Pluripotent Stem Cell-Derived Macrophages for Unraveling Human Macrophage Biology.
Arterioscler Thromb Vasc Biol. 2017 Nov;37(11):2000-2006. doi: 10.1161/ATVBAHA.117.309195. Epub 2017 Oct 5.
8
Engineered human vascularized constructs accelerate diabetic wound healing.
Biomaterials. 2016 Sep;102:107-19. doi: 10.1016/j.biomaterials.2016.06.009. Epub 2016 Jun 4.
9
Tumor-Free Transplantation of Patient-Derived Induced Pluripotent Stem Cell Progeny for Customized Islet Regeneration.
Stem Cells Transl Med. 2016 May;5(5):694-702. doi: 10.5966/sctm.2015-0017. Epub 2016 Mar 17.
10
Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells.
Fluids Barriers CNS. 2017 Apr 13;14(1):9. doi: 10.1186/s12987-017-0059-0.

引用本文的文献

1
Effect of thymoquinone on vitamin D metabolism in glucocorticoid-induced insulin resistance.
Iran J Basic Med Sci. 2025;28(3):292-298. doi: 10.22038/ijbms.2024.81932.17725.
3
Translational potential of hiPSCs in predictive modeling of heart development and disease.
Birth Defects Res. 2022 Oct 1;114(16):926-947. doi: 10.1002/bdr2.1999. Epub 2022 Mar 9.
4
Novel Methods to Mobilize, Isolate, and Expand Mesenchymal Stem Cells.
Int J Mol Sci. 2021 May 27;22(11):5728. doi: 10.3390/ijms22115728.
8
Functional Genomics and CRISPR Applied to Cardiovascular Research and Medicine.
Arterioscler Thromb Vasc Biol. 2019 Sep;39(9):e188-e194. doi: 10.1161/ATVBAHA.119.312579. Epub 2019 Aug 21.
9
Metabolism, Obesity, and Diabetes Mellitus.
Arterioscler Thromb Vasc Biol. 2019 Jul;39(7):e166-e174. doi: 10.1161/ATVBAHA.119.312005. Epub 2019 Jun 26.

本文引用的文献

2
Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity.
Cell Stem Cell. 2017 Apr 6;20(4):518-532.e9. doi: 10.1016/j.stem.2016.11.005. Epub 2016 Dec 22.
3
An Isogenic Human ESC Platform for Functional Evaluation of Genome-wide-Association-Study-Identified Diabetes Genes and Drug Discovery.
Cell Stem Cell. 2016 Sep 1;19(3):326-40. doi: 10.1016/j.stem.2016.07.002. Epub 2016 Aug 11.
5
Minireview: Genome Editing of Human Pluripotent Stem Cells for Modeling Metabolic Disease.
Mol Endocrinol. 2016 Jun;30(6):575-86. doi: 10.1210/me.2015-1290. Epub 2016 Apr 13.
6
Dissecting diabetes/metabolic disease mechanisms using pluripotent stem cells and genome editing tools.
Mol Metab. 2015 Jun 20;4(9):593-604. doi: 10.1016/j.molmet.2015.06.006. eCollection 2015 Sep.
7
Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells.
Nat Cell Biol. 2015 Aug;17(8):994-1003. doi: 10.1038/ncb3205. Epub 2015 Jul 27.
8
Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor.
Biomaterials. 2015;53:621-33. doi: 10.1016/j.biomaterials.2015.02.121. Epub 2015 Mar 24.
10
Severe insulin resistance alters metabolism in mesenchymal progenitor cells.
Endocrinology. 2015 Jun;156(6):2039-48. doi: 10.1210/en.2014-1403. Epub 2015 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验