Fang Tao, Jia Junteng, Li Shuhua
School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University , Nanjing 210093, People's Republic of China.
J Phys Chem A. 2016 May 5;120(17):2700-11. doi: 10.1021/acs.jpca.5b10927. Epub 2016 Apr 25.
The generalized energy-based fragmentation (GEBF) approach for molecular crystals with periodic boundary condition (PBC) (denoted as PBC-GEBF) is extended to allow vibrational spectra of molecular crystals to be easily computed at various theory levels. Within the PBC-GEBF approach, the vibrational frequencies of a molecular crystal can be directly evaluated from molecular quantum chemistry calculations on a series of nonperiodic molecular systems. With this approach, the vibrational spectra of molecular crystals can be calculated with much reduced computational costs at various theory levels, as compared to those required by the methods based on periodic electronic structure theory. By testing the performance of the PBC-GEBF method for two molecular crystals (CO2 and imidazole), we demonstrate that the PBC-GEBF approach can reproduce the results of the methods based on periodic electronic structure theory in predicting vibrational spectra of molecular crystals. We apply the PBC-GEBF method at second-order Møller-Plesset perturbation theory (PBC-GEBF-MP2 in short) to investigate the vibrational spectra of the urea and ammonia borane crystals. Our results show that the PBC-GEBF-MP2 method can provide quite accurate descriptions for the observed vibrational spectra of the two systems under study.
具有周期性边界条件(PBC)的分子晶体的广义能量基碎片化(GEBF)方法(表示为PBC-GEBF)得到了扩展,使得分子晶体的振动光谱能够在各种理论水平上轻松计算。在PBC-GEBF方法中,分子晶体的振动频率可以直接从一系列非周期性分子体系的分子量子化学计算中评估得出。通过这种方法,与基于周期性电子结构理论的方法相比,分子晶体的振动光谱在各种理论水平上都能以大大降低的计算成本进行计算。通过测试PBC-GEBF方法对两种分子晶体(二氧化碳和咪唑)的性能,我们证明了PBC-GEBF方法在预测分子晶体振动光谱方面能够重现基于周期性电子结构理论的方法的结果。我们将PBC-GEBF方法应用于二阶Møller-Plesset微扰理论(简称为PBC-GEBF-MP2)来研究尿素和氨硼烷晶体的振动光谱。我们的结果表明,PBC-GEBF-MP2方法能够对所研究的两个体系的观测振动光谱提供相当准确的描述。