Li Yunzhi, Wang Dong, Fu Fangjia, Xia Qiying, Li Wei, Li Shuhua
School of Chemistry and Chemical Engineering, Linyi University, Linyi, China.
School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China.
J Comput Chem. 2022 Apr 15;43(10):704-716. doi: 10.1002/jcc.26828. Epub 2022 Feb 25.
The generalized energy-based fragmentation (GEBF) approach is extended to facilitate ab initio investigations of structures, lattice energies, vibrational spectra and H NMR chemical shifts of ionic crystals and condensed-phase ionic liquids (ILs) with the periodic boundary conditions (PBC). For selected periodic systems, our results demonstrate that the so-called PBC-GEBF approach can provide satisfactory descriptions on ground-state energies, structures, and vibrational spectra of ionic crystals and IL crystals. The PBC-GEBF approach is then applied to three realistic condensed phase systems. For three ionic crystals (LiCl, NaCl, and KCl), we apply the PBC-GEBF approach with MP2 theory as well as some popular DFT methods to investigate their crystal structures and lattice energies. Our calculations indicate that the crystal structures obtained with PBC-GEBF-MP2/6-311 + G** are very close to the corresponding X-ray structures, while PBC-GEBF-ωB97X-D/6-311 + G** provides satisfactory prediction for crystal structures and lattice energies. For two polymorphs of [n-C mim][Cl] crystals, we find that the PBC-GEBF approach at the M06-2X/6-311 + G** level can give a satisfactory descriptions on structures and Raman spectra of these two crystals. Furthermore, for [C mim][BF ] ILs, we demonstrate that their H NMR chemical shifts can be estimated from averaging over 5 typical snapshots (extracted from MD simulations) with the PBC-GEBF approach at the B97-2/pcSseg-2 level. The calculated results account for the observed experimental data quite well. Therefore, we expect that the PBC-GEBF approach, combined with various quantum chemistry methods, will become an effective tool in predicting structures and properties of ionic crystals and condensed-phase ILs.
基于广义能量的碎片化(GEBF)方法得到了扩展,以促进对具有周期性边界条件(PBC)的离子晶体和凝聚相离子液体(ILs)的结构、晶格能、振动光谱和1H NMR化学位移进行从头算研究。对于选定的周期性系统,我们的结果表明,所谓的PBC-GEBF方法能够对离子晶体和IL晶体的基态能量、结构和振动光谱给出令人满意的描述。然后将PBC-GEBF方法应用于三个实际的凝聚相系统。对于三种离子晶体(LiCl、NaCl和KCl),我们采用PBC-GEBF方法结合MP2理论以及一些常用的DFT方法来研究它们的晶体结构和晶格能。我们的计算表明,用PBC-GEBF-MP2/6-311+G得到的晶体结构与相应的X射线结构非常接近,而PBC-GEBF-ωB97X-D/6-311+G对晶体结构和晶格能提供了令人满意的预测。对于[n-C mim][Cl]晶体的两种多晶型,我们发现M06-2X/6-311+G**水平的PBC-GEBF方法能够对这两种晶体的结构和拉曼光谱给出令人满意的描述。此外,对于[C mim][BF ]离子液体,我们证明可以通过在B97-2/pcSseg-2水平上用PBC-GEBF方法对5个典型快照(从MD模拟中提取)进行平均来估计它们的1H NMR化学位移。计算结果与观察到的实验数据吻合得很好。因此,我们期望PBC-GEBF方法与各种量子化学方法相结合,将成为预测离子晶体和凝聚相离子液体的结构和性质的有效工具。