Suppr超能文献

研究脂质作为化学交换诱导磁共振成像频率偏移源的情况。

Investigating lipids as a source of chemical exchange-induced MRI frequency shifts.

作者信息

Shmueli K, Dodd S J, van Gelderen P, Duyn J H

机构信息

Department of Medical Physics & Biomedical Engineering, University College London, UK.

Advanced MRI Section, Laboratory of Functional & Molecular Imaging, National Institute of Neurological Disorders & Stroke, National Institutes of Health, USA.

出版信息

NMR Biomed. 2017 Apr;30(4). doi: 10.1002/nbm.3525. Epub 2016 Apr 13.

Abstract

While magnetic susceptibility is a major contributor to NMR resonance frequency variations in the human brain, a substantial contribution may come from the chemical exchange of protons between water and other molecules. Exchange-induced frequency shifts f have been measured in tissue and protein solutions, but relatively lipid-rich white matter (WM) has a larger f than gray matter, suggesting that lipids could contribute. Galactocerebrosides (GC) are a prime candidate as they are abundant in WM and susceptible to exchange. To investigate this, f was measured in a model of WM lipid membranes in the form of multilamellar vesicles (MLVs), consisting of a 1:2 molar ratio of GC and phospholipids (POPC), and in MLVs with POPC only. Chemical shift imaging with 15% volume fraction of dioxane, an internal reference whose protons are assumed not to undergo chemical exchange, was used to remove susceptibility-induced frequency shifts in an attempt to measure f in MLVs at several lipid concentrations. Initial analysis of these measurements indicated a necessity to correct for small unexpected variations in dioxane concentration due to its effect on the water frequency shift. To achieve this, the actual dioxane concentration was inferred from spectral analysis and its additional contribution to f was removed through separate experiments which showed that the water-dioxane frequency shift depended linearly on the dioxane concentration at low concentrations with a proportionality constant of -0.021 ± 0.002 ppb/mM in agreement with published experiments. Contrary to expectations and uncorrected results, for GC + POPC vesicles, the dependence of the corrected f on GC concentration was insignificant (0.023 ± 0.037 ppb/mM; r  = 0.085, p > 0.57), whereas for the POPC-only vesicles a small but significant linear increase with POPC concentration was found: 0.044 ± 0.008 ppb/mM (r  = 0.877, p < 0.01). These findings suggest that the exchange-induced contribution of lipids to frequency contrast in WM may be small. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

摘要

虽然磁化率是导致人类大脑核磁共振共振频率变化的主要因素,但质子在水和其他分子之间的化学交换也可能起了很大作用。已经在组织和蛋白质溶液中测量了交换诱导的频率偏移f,但相对富含脂质的白质(WM)的f值比灰质更大,这表明脂质可能有影响。半乳糖脑苷脂(GC)是一个主要候选对象,因为它们在白质中含量丰富且易于发生交换。为了对此进行研究,在由GC和磷脂(POPC)摩尔比为1:2的多层囊泡(MLV)形式的白质脂质膜模型中以及仅含POPC的MLV中测量了f。使用含有15%体积分数二氧六环的化学位移成像,二氧六环是一种内部参考物,假定其质子不发生化学交换,用于消除磁化率诱导的频率偏移,试图在几种脂质浓度下测量MLV中的f。对这些测量结果的初步分析表明,由于二氧六环浓度对水频率偏移的影响,有必要对其意外的微小变化进行校正。为了实现这一点,通过光谱分析推断出实际的二氧六环浓度,并通过单独的实验消除其对f的额外贡献,这些实验表明,在低浓度下,水 - 二氧六环频率偏移与二氧六环浓度呈线性关系,比例常数为 -0.021±0.002 ppb/mM,与已发表的实验结果一致。与预期和未校正的结果相反,对于GC + POPC囊泡,校正后的f对GC浓度的依赖性不显著(0.023±0.037 ppb/mM;r = 0.085,p > 0.57),而对于仅含POPC的囊泡,发现f随POPC浓度有小但显著的线性增加:0.044±0.008 ppb/mM(r = 0.877,p < 0.01)。这些发现表明,脂质对白质频率对比度的交换诱导贡献可能很小。2016年发表。本文是美国政府作品,在美国属于公共领域。

相似文献

1
Investigating lipids as a source of chemical exchange-induced MRI frequency shifts.
NMR Biomed. 2017 Apr;30(4). doi: 10.1002/nbm.3525. Epub 2016 Apr 13.
2
The contribution of chemical exchange to MRI frequency shifts in brain tissue.
Magn Reson Med. 2011 Jan;65(1):35-43. doi: 10.1002/mrm.22604.
3
Studies of phospholipid hydration by high-resolution magic-angle spinning nuclear magnetic resonance.
Biophys J. 1999 Jan;76(1 Pt 1):387-99. doi: 10.1016/S0006-3495(99)77205-X.
4
Quantification of γ-aminobutyric acid (GABA) in H MRS volumes composed heterogeneously of grey and white matter.
NMR Biomed. 2016 Nov;29(11):1644-1655. doi: 10.1002/nbm.3622. Epub 2016 Sep 30.
5
Contribution of iron and protein contents from rat brain subcellular fractions to MR phase imaging.
Magn Reson Med. 2017 May;77(5):2028-2039. doi: 10.1002/mrm.26288. Epub 2016 Jun 7.
6
Observation of true and pseudo NOE signals using CEST-MRI and CEST-MRS sequences with and without lipid suppression.
Magn Reson Med. 2015 Apr;73(4):1615-22. doi: 10.1002/mrm.25277. Epub 2014 May 6.
7
Investigating the interaction of saposin C with POPS and POPC phospholipids: a solid-state NMR spectroscopic study.
Biophys J. 2007 Nov 15;93(10):3480-90. doi: 10.1529/biophysj.107.107789. Epub 2007 Aug 17.
8
Investigating the interaction between peptides of the amphipathic helix of Hcf106 and the phospholipid bilayer by solid-state NMR spectroscopy.
Biochim Biophys Acta. 2014 Jan;1838(1 Pt B):413-8. doi: 10.1016/j.bbamem.2013.10.007. Epub 2013 Oct 19.
9
Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF).
Magn Reson Med. 2018 Dec;80(6):2449-2463. doi: 10.1002/mrm.27221. Epub 2018 May 13.

本文引用的文献

3
Accurate quantification of water-macromolecule exchange induced frequency shift: effects of reference substance.
Magn Reson Med. 2013 Jan;69(1):263-8. doi: 10.1002/mrm.24223. Epub 2012 Feb 28.
4
The contribution of chemical exchange to MRI frequency shifts in brain tissue.
Magn Reson Med. 2011 Jan;65(1):35-43. doi: 10.1002/mrm.22604.
5
Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5130-5. doi: 10.1073/pnas.0910222107. Epub 2010 Mar 2.
6
Participation of galactosylceramide and sulfatide in glycosynapses between oligodendrocyte or myelin membranes.
FEBS Lett. 2010 May 3;584(9):1771-8. doi: 10.1016/j.febslet.2009.11.074. Epub 2009 Nov 24.
7
Protein-induced water 1H MR frequency shifts: contributions from magnetic susceptibility and exchange effects.
J Magn Reson. 2010 Jan;202(1):102-8. doi: 10.1016/j.jmr.2009.10.005. Epub 2009 Oct 30.
8
Glycosphingolipids--nature, function, and pharmacological modulation.
Angew Chem Int Ed Engl. 2009;48(47):8848-69. doi: 10.1002/anie.200902620.
9
Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data.
Magn Reson Med. 2009 Dec;62(6):1510-22. doi: 10.1002/mrm.22135.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验