Suppr超能文献

通过梯度离心法对甲型流感病毒衣壳进行体外拆解

In Vitro Disassembly of Influenza A Virus Capsids by Gradient Centrifugation.

作者信息

Stauffer Sarah, Nebioglu Firat, Helenius Ari

机构信息

Institute of Biochemistry, ETH Zurich; Department of Biochemistry, University of Zurich;

Institute for Molecular Health Sciences, ETH Zurich.

出版信息

J Vis Exp. 2016 Mar 27(109):e53909. doi: 10.3791/53909.

Abstract

Acid-triggered molecular processes closely control cell entry of many viruses that enter through the endocytic system. In the case of influenza A virus (IAV), virus fusion with the endosomal membrane as well as the subsequent disassembly of the viral capsid, called uncoating, is governed by the ionic conditions inside endocytic vesicles. The early steps in the virus life cycle are hard to study because endosomes cannot be directly accessed experimentally, creating the need for an in vitro approach. Here, we describe a method based on velocity gradient centrifugation of purified virions through a two-layer glycerol gradient, which enables analysis of the IAV core and its stability. The gradient contains a non-ionic detergent (NP-40) in its lower layer to remove the viral membrane by solubilization as the virus sediments toward the bottom. At neutral pH, viral cores are pelleted as stable structures. The major core components, matrix protein (M1) and the viral ribonucleoproteins (vRNPs), can be clearly identified in the pellet fraction by SDS-PAGE. Decreasing the pH to 6.0 or lower in the bottom layer selectively removes M1 from the pellet followed by release of vRNPs at more acidic conditions. Viral protein bands on Coomassie-stained gels can be subjected to densitometric quantification to monitor intermediate states of IAV disassembly. Besides pH, other factors that influence viral core stability can be assessed, such as salt concentration and putative viral uncoating factors, simply by modifying the detergent-containing glycerol layer accordingly. Taken together, the presented technique allows highly reproducible and quantitative analysis of viral uncoating in vitro. It can be applied to other enveloped viruses that undergo complex uncoating processes.

摘要

酸触发的分子过程密切控制着许多通过内吞系统进入细胞的病毒的细胞进入过程。就甲型流感病毒(IAV)而言,病毒与内体膜的融合以及随后病毒衣壳的解体(称为脱壳)受内吞小泡内的离子条件控制。病毒生命周期的早期步骤很难研究,因为无法通过实验直接获取内体,因此需要一种体外方法。在这里,我们描述了一种基于通过两层甘油梯度对纯化的病毒粒子进行速度梯度离心的方法,该方法能够分析IAV核心及其稳定性。梯度的下层含有一种非离子洗涤剂(NP-40),当病毒沉淀到底部时,通过溶解作用去除病毒膜。在中性pH值下,病毒核心作为稳定结构沉淀下来。通过SDS-PAGE可以在沉淀部分清楚地鉴定出主要的核心成分,即基质蛋白(M1)和病毒核糖核蛋白(vRNP)。将底层的pH值降至6.0或更低会选择性地从沉淀中去除M1,随后在更酸性的条件下释放vRNP。考马斯亮蓝染色凝胶上的病毒蛋白条带可以进行光密度定量分析,以监测IAV脱壳的中间状态。除了pH值之外,其他影响病毒核心稳定性的因素,如盐浓度和假定的病毒脱壳因子,只需相应地修改含洗涤剂的甘油层即可进行评估。综上所述,所提出的技术允许在体外对病毒脱壳进行高度可重复和定量的分析。它可以应用于其他经历复杂脱壳过程的包膜病毒。

相似文献

1
In Vitro Disassembly of Influenza A Virus Capsids by Gradient Centrifugation.
J Vis Exp. 2016 Mar 27(109):e53909. doi: 10.3791/53909.
4
Influenza A Virus: Cellular Entry.
Subcell Biochem. 2023;106:387-401. doi: 10.1007/978-3-031-40086-5_14.
6
Real-time dissection of dynamic uncoating of individual influenza viruses.
Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2577-2582. doi: 10.1073/pnas.1812632116. Epub 2019 Jan 9.
7
In vitro uncoating of HIV-1 cores.
J Vis Exp. 2011 Nov 8(57):3384. doi: 10.3791/3384.
9
Influenza A virus uses the aggresome processing machinery for host cell entry.
Science. 2014 Oct 24;346(6208):473-7. doi: 10.1126/science.1257037.
10
Aggregation of influenza virus ribonucleocapsids at low pH.
Virus Res. 2002 May 10;85(2):141-9. doi: 10.1016/s0168-1702(02)00028-x.

引用本文的文献

1
New insights into application of nanoparticles in the diagnosis and screening of novel coronavirus (SARS-CoV-2).
Emergent Mater. 2021;4(1):101-117. doi: 10.1007/s42247-021-00182-w. Epub 2021 Mar 31.
2
In vitro methods for testing antiviral drugs.
Biotechnol Adv. 2018 May-Jun;36(3):557-576. doi: 10.1016/j.biotechadv.2017.12.016. Epub 2017 Dec 29.

本文引用的文献

1
Influenza A virus uses the aggresome processing machinery for host cell entry.
Science. 2014 Oct 24;346(6208):473-7. doi: 10.1126/science.1257037.
3
pH-Controlled two-step uncoating of influenza virus.
Biophys J. 2014 Apr 1;106(7):1447-56. doi: 10.1016/j.bpj.2014.02.018.
5
Virus entry at a glance.
J Cell Sci. 2013 Mar 15;126(Pt 6):1289-95. doi: 10.1242/jcs.119685. Epub 2013 May 2.
6
Cullin-3 regulates late endosome maturation.
Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):823-8. doi: 10.1073/pnas.1118744109. Epub 2012 Jan 4.
7
Histone deacetylase 8 is required for centrosome cohesion and influenza A virus entry.
PLoS Pathog. 2011 Oct;7(10):e1002316. doi: 10.1371/journal.ppat.1002316. Epub 2011 Oct 27.
8
Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway.
PLoS Pathog. 2011 Mar;7(3):e1001329. doi: 10.1371/journal.ppat.1001329. Epub 2011 Mar 31.
9
Influenza virus evolution, host adaptation, and pandemic formation.
Cell Host Microbe. 2010 Jun 25;7(6):440-51. doi: 10.1016/j.chom.2010.05.009.
10
Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis.
Electrophoresis. 2004 May;25(9):1327-33. doi: 10.1002/elps.200305844.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验