Suppr超能文献

人类慢适应I型纤维力刺激的贝叶斯解码

The Bayesian Decoding of Force Stimuli from Slowly Adapting Type I Fibers in Humans.

作者信息

Kasi Patrick, Wright James, Khamis Heba, Birznieks Ingvars, van Schaik André

机构信息

The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW, Australia.

Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia.

出版信息

PLoS One. 2016 Apr 14;11(4):e0153366. doi: 10.1371/journal.pone.0153366. eCollection 2016.

Abstract

It is well known that signals encoded by mechanoreceptors facilitate precise object manipulation in humans. It is therefore of interest to study signals encoded by the mechanoreceptors because this will contribute further towards the understanding of fundamental sensory mechanisms that are responsible for coordinating force components during object manipulation. From a practical point of view, this may suggest strategies for designing sensory-controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear decoding paradigm to reconstruct the force stimulus given signals from slowly adapting type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding model which is a function of the force stimulus and the force's rate of change. In the decoding phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike patterns and parameters described by the encoding model. Under the current encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that the force derivative contributes significantly to the rate of change to the SA-I afferent spike modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous because it can incorporate past and current information in order to make predictions--consistent with neural systems--with little computational resources. This makes it suitable for interfacing with prostheses.

摘要

众所周知,机械感受器编码的信号有助于人类精确地操纵物体。因此,研究机械感受器编码的信号是很有意义的,因为这将有助于进一步理解在物体操纵过程中负责协调力分量的基本感觉机制。从实际角度来看,这可能为设计感觉控制的生物医学设备和机器人操纵器提供策略。我们使用两阶段非线性解码范式,根据来自慢适应I型(SA-I)触觉传入神经的信号来重建力刺激。首先,我们描述一个非齐次泊松编码模型,它是力刺激及其变化率的函数。在解码阶段,给定SA-I尖峰模式和编码模型描述的参数,我们使用递归非线性贝叶斯滤波器来重建力分布。在当前的编码模型下,力与其导数的模态比为:1.26比1.02。这表明力的导数对SA-I传入神经尖峰调制的变化率有显著贡献。此外,使用递归贝叶斯解码算法是有利的,因为它可以整合过去和当前的信息,以便用很少的计算资源进行预测——这与神经系统一致。这使得它适合与假肢接口。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5020/4831826/37e2911950f1/pone.0153366.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验