Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA.
Phys Rev E. 2016 Mar;93(3):033312. doi: 10.1103/PhysRevE.93.033312. Epub 2016 Mar 28.
We analyze hydrodynamic fluctuations of a hybrid simulation under shear flow. The hybrid simulation is based on the Navier-Stokes (NS) equations on one domain and dissipative particle dynamics (DPD) on the other. The two domains overlap, and there is an artificial boundary for each one within the overlapping region. To impose the artificial boundary of the NS solver, a simple spatial-temporal averaging is performed on the DPD simulation. In the artificial boundary of the particle simulation, four popular strategies of constraint dynamics are implemented, namely the Maxwell buffer [Hadjiconstantinou and Patera, Int. J. Mod. Phys. C 08, 967 (1997)], the relaxation dynamics [O’Connell and Thompson, Phys. Rev. E 52, R5792 (1995)], the least constraint dynamics [Nie et al.,J. Fluid Mech. 500, 55 (2004); Werder et al., J. Comput. Phys. 205, 373 (2005)], and the flux imposition [Flekkøy et al., Europhys. Lett. 52, 271 (2000)], to achieve a target mean value given by the NS solver. Going beyond the mean flow field of the hybrid simulations, we investigate the hydrodynamic fluctuations in the DPD domain. Toward that end, we calculate the transversal autocorrelation functions of the fluctuating variables in k space to evaluate the generation, transport, and dissipation of fluctuations in the presence of a hybrid interface. We quantify the unavoidable errors in the fluctuations, due to both the truncation of the domain and the constraint dynamics performed in the artificial boundary. Furthermore, we compare the four methods of constraint dynamics and demonstrate how to reduce the errors in fluctuations. The analysis and findings of this work are directly applicable to other hybrid simulations of fluid flow with thermal fluctuations.
我们分析了剪切流下混合模拟的流体动力涨落。混合模拟基于一个区域的纳维-斯托克斯(NS)方程和另一个区域的耗散粒子动力学(DPD)。两个区域重叠,在重叠区域内每个区域都有一个人为边界。为了施加 NS 求解器的人为边界,在 DPD 模拟中进行简单的时空平均。在粒子模拟的人为边界中,实现了四种流行的约束动力学策略,即麦克斯韦缓冲[Hadjiconstantinou 和 Patera,Int. J. Mod. Phys. C 08, 967 (1997)]、弛豫动力学[O’Connell 和 Thompson,Phys. Rev. E 52, R5792 (1995)]、最小约束动力学[Nie 等人,J. Fluid Mech. 500, 55 (2004);Werder 等人,J. Comput. Phys. 205, 373 (2005)]和通量施加[Flekkøy 等人,Europhys. Lett. 52, 271 (2000)],以达到 NS 求解器给定的目标平均值。超出混合模拟的平均流场,我们研究了 DPD 域中的流体动力涨落。为此,我们计算了 k 空间中涨落变量的横向自相关函数,以评估在混合界面存在的情况下涨落的产生、传输和耗散。我们量化了由于域截断和人为边界中执行的约束动力学而导致的涨落中不可避免的误差。此外,我们比较了四种约束动力学方法,并展示了如何减少涨落中的误差。这项工作的分析和发现直接适用于具有热波动的其他流体混合模拟。