Wang L W, Meng X L, Guo X Y, Zhao W, Wang Z Y
Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China.
Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China.
Beijing Da Xue Xue Bao Yi Xue Ban. 2016 Apr 18;48(2):297-303.
To evaluate the effects of increasing end-tidal concentrations of sevoflurane and increasing stimulation voltage on motor evoked potentials, so as to provide evidence in making anesthesia plan for intraspinal tumor surgery.
In the study, 48 patients scheduled to undergo intraspinal tumor surgery [American Society of Anesthesiology,(ASA) I-II, 18-65 years old] were enrolled. After general anesthesia induction, the patients were assigned to receive sevoflurane anesthesia of increasing end-tidal concentration in the sequence of 0.0%, 0.5%, 1.0% and 1.5% respectively, under a background of propofol and remifentanil. All the observations were done before the important steps of surgery. Remifentanil infusion rate was 0.2 μg /(kg×min), while the propofol infusion rate was adjusted to maintain the bispectral index values within the range of 30-50. At each concentration, 4 stimulation voltages of 300 V, 400 V, 500 V and 600 V were employed to elicit motor evoked potentials (MEPs). The amplitude and latency of each MEP were compared. The success ratio was also recorded.
The concentration of sevoflurane and the stimulation voltage had impacts on the amplitude and latency of MEPs. Under each stimulation voltage, the MEPs amplitude decreased following increasing end-tidal sevoflurane concentrations, and significant differences were found in comparing 1.5% sevoflurane (left 20.50 μV, 70.71 μV, 135.97 μV, 190.00 μV , right 14.29 μV, 50.71 μV, 73.10 μV, 77.50 μV) with 0.0% sevoflurane (left 143.00 μV, 388.10 μV, 484.53 μV, 500.00 μV, right 176.00 μV, 407.60 μV, 384.35 μV, 451.00 μV) and 0.5% sevoflurane (left 100.00 μV, 362.57 μV, 444.05 μV, 435.00 μV, right 115.00 μV, 207.15 μV, 258.34 μV, 358.50 μV), left χ(2)= 27.46,P<0.01, right χ(2)= 60.49,P<0.01; left χ(2)= 20.73,P<0.01, right χ(2)= 55.05,P<0.01;left χ(2)= 34.25,P<0.01,right χ(2)=33.58,P<0.01;left χ(2)= 28.61,P<0.01 ,right χ(2)= 49.04,P<0.01; while there were no statistical differences in the latency changes (P=0.26). Under each end-tidal sevoflurane concentration, the MEPs amplitude increased following increasing stimulation voltages, and significant differences were found in comparing 300 V (left 143.00 μV, 100.00 μV, 61.50 μV, 20.50 μV , right 176.00 μV, 115.00 μV, 41.07 μV, 14.29 μV) with 400 V (left 388.10 μV, 362.57 μV, 198.81 μV, 70.71 μV, right 407.60 μV, 207.15 μV, 89.00 μV, 50.71 μV) and 500 V (left 484.53 μ V, 444.05 μV, 216.24 μV, 135.97 μV, right 384.35 μV, 258.34 μV, 187.50 μV, 73.10 μV) and 600 V (left 500.00 μV, 435.00 μV, 344.00 μV, 190.00 μV, right 451.00 μV, 385.50 μV, 156.00 μV, 77.50 μV), left χ(2)= 45.55,P<0.01, right χ(2)= 25.73,P<0.01; left χ(2)= 46.67,P<0.01, right χ(2)= 55.30,P<0.01;left χ(2)= 47.36,P<0.01,right χ(2)= 47.82,P<0.01; left χ(2)= 38.67,P<0.01, right χ(2)= 45.87,P<0.01; while the latencies were decreased, and significant differences were found in comparing 300 V with 400 V and 500 V and 600V(left F=7.50,P=0.01 , right F=13.33,P<0.01), but the differences had little clinical significance. The success ratio decreased by increasing end-tidal sevoflurane concentration, and significant differences were found in comparing 1.5% sevoflurane (left 43.8%,70.8%, 77.1%,81.3%, right 37.5%,60.4%,75.0%,66.7%) with 0.0% sevoflurane (left 79.2%,87.5%,95.8%,93.8%, right 75.0%,95.8%,95.8%, 95.8%) and 0.5% sevoflurane (left 72.9%,89.6%,95.8%,95.8%, right 66.7%,89.6%,95.8%, 97.9%); the success ratio increased by increasing stimulation voltage, and significant differences were found in comparing 300 V(left 79.2%,72.9%,62.5%,43.8%, right 75.0%,66.7%,60.4%, 37.5%)with 400 V(left 87.5% ,89.6%,77.1%,70.8% , right 95.8%,89.6%,79.2%,60.4%)and 500 V(left 95.8%,95.8%,91.7%,77.1%, right 95.8%,95.8%,81.3%,75.0%)and 600 V (left 93.8%, 95.8%,89.6%,81.3%, right 95.8%,97.9%,89.6%,66.7%), but there were no statistical differences in the success ratio of MEPs between the group with stimulation voltage of 600 V , end tidal sevoflurane concentration of 1.5% and the group with stimulation voltage of 300 V, end tidal sevoflurane concentration of 0.0% (P=0.22).
Sevoflurane inhibited MEPs in a dose-dependent manner. It can decrease the amplitudes and prolong the latencies. But increasing stimulation voltage will facilitate MEPs monitoring and increase the success ratio. Sevoflurane can be used in larger parts of MEPs monitoring surgery by increasing the stimulation voltage.
评估增加七氟醚呼气末浓度及增加刺激电压对运动诱发电位的影响,为脊髓肿瘤手术麻醉方案的制定提供依据。
本研究纳入48例拟行脊髓肿瘤手术的患者[美国麻醉医师协会(ASA)分级I-II级,年龄18-65岁]。全身麻醉诱导后,患者在丙泊酚和瑞芬太尼背景下,分别按呼气末浓度0.0%、0.5%、1.0%和1.5%的顺序接受七氟醚麻醉。所有观察均在手术重要步骤前进行。瑞芬太尼输注速率为0.2μg/(kg×min),丙泊酚输注速率根据脑电双频指数值调整,维持在30-50之间。在每个浓度下,采用300V、400V、500V和600V四个刺激电压诱发运动诱发电位(MEP),比较各MEP的波幅和潜伏期,并记录成功率。
七氟醚浓度和刺激电压对MEP的波幅和潜伏期有影响。在各刺激电压下,随着呼气末七氟醚浓度增加,MEP波幅降低,比较1.5%七氟醚(左侧20.50μV、70.71μV、135.97μV、190.00μV,右侧14.29μV、50.7tμV、73.10μV、77.50μV)与0.0%七氟醚(左侧143.00μV、388.10μV、484.53μV、500.00μV,右侧176.00μV、407.60μV、384.35μV、451.00μV)和0.5%七氟醚(左侧100.00μV、362.57μV、444.05μV、435.00μV,右侧115.00μV、207.15μV、258.34μV、358.50μV)时差异有统计学意义,左侧χ(2)=27.46,P<0.01,右侧χ(2)=60.49,P<0.01;左侧χ(2)=20.73,P<0.01,右侧χ(2)=55.05,P<0.01;左侧χ(2)=34.25,P<0.01,右侧χ(2)=33.58,P<0.01;左侧χ(2)=28.61,P<0.01,右侧χ(2)=49.04,P<0.01;而潜伏期变化无统计学差异(P=0.26)。在各呼气末七氟醚浓度下,随着刺激电压增加,MEP波幅升高,比较300V(左侧143.00μV、100.00μV、61.50μV、20.50μV,右侧176.00μV、115.00μV、41.07μV、14.29μV)与400V(左侧388.10μV、362.57μV、198.81μV、70.71μV,右侧407.60μV、207.15μV、89.00μV、50.71μV)、|500V(左侧484.53μV、444.05μV、216.24μV、135.97μV,右侧384.35μV、258.34μV、187.50μV\、73.10μV)和600V(左侧500.00μV、435.00μV、344.00μV、190.00μV,右侧451.00μV、385.50μV、156.00μV、77.50μV)时差异有统计学意义,左侧χ(2)=45.55,P<0.01,右侧χ(2)=25.73,P<0.01;左侧χ(2)=46.67,P<0.OM,右侧χ(2)=55.30,P<0.01;左侧χ(2)=47.36,P<0.01,右侧χ(2)=47.82,P<0.01;左侧χ(2)=38.67,P<0.01,右侧χ(2)=45.OS,P<0.01;潜伏期缩短,比较300V与400V、500V和600V时差异有统计学意义(左侧F=7.50,P=0.01,右侧F=13.33,P<0.01),但差异临床意义不大。随着呼气末七氟醚浓度增加,成功率降低,比较1.5%七氟醚(左侧43.8%、70.8%、77.1%、81.3%,右侧37.5%、60.4%、75.0%、S6.7%)与0.0%七氟醚(左侧79.2%、87.5%、95.8%、93.8%,右侧75.0%、95.8%、95.8%、95.8%)和0.5%七氟醚(左侧72.9%、89.6%、95.8%、95.8%,右侧66.7%、89.6%、95.8%、97.9%)时差异有统计学意义;随着刺激电压增加,成功率升高,比较300V(左侧\79.2%、72.9%、62.5%、43.8%,右侧75.0%、66.7%、60.4%、37.5%)与400V(左侧87.5%、89.6%、77.1%、70.8%,右侧95.8%、89.6%、79.2%、60.4%)、500V(左侧95.8%、95.8%、91.7%、77.1%,右侧95,8%、95.8%、81.3%、75.0%)和600V(左侧93.8%、95.8%、89.6%、81.3%,右侧95.8%、97.9%、89.6%、66.7%)时差异有统计学意义,但刺激电压600V、呼气末七氟醚浓度1.5%组与刺激电压300V、呼气末七氟醚浓度0.0%组MEP成功率差异无统计学意义(P=0.22)。
七氟醚对MEP有剂量依赖性抑制作用,可降低波幅、延长潜伏期。增加刺激电压有助于MEP监测并提高成功率。通过增加刺激电压,七氟醚可用于大部分MEP监测手术。