Drga Vit, Plack Christopher J, Yasin Ifat
Ear Institute, University College London (UCL), 332 Grays Inn Road, WC1X 8EE, London, UK.
School of Psychological Sciences, The University of Manchester, M13 9PL, Manchester, UK.
Adv Exp Med Biol. 2016;894:477-484. doi: 10.1007/978-3-319-25474-6_50.
Cochlear gain reduction via efferent feedback from the medial olivocochlear bundle is frequency specific (Guinan, Curr Opin Otolaryngol Head Neck Surg 18:447-453, 2010). The present study with humans used the Fixed Duration Masking Curve psychoacoustical method (Yasin et al., J Acoust Soc Am 133:4145-4155, 2013a; Yasin et al., Basic aspects of hearing: physiology and perception, pp 39-46, 2013b; Yasin et al., J Neurosci 34:15319-15326, 2014) to estimate the frequency specificity of the efferent effect at the cochlear level. The combined duration of the masker-plus-signal stimulus was 25 ms, within the efferent onset delay of about 31-43 ms (James et al., Clin Otolaryngol 27:106-112, 2002). Masker level (4.0 or 1.8 kHz) at threshold was obtained for a 4-kHz signal in the absence or presence of an ipsilateral 60 dB SPL, 160-ms precursor (200-Hz bandwidth) centred at frequencies between 2.5 and 5.5 kHz. Efferent-mediated cochlear gain reduction was greatest for precursors with frequencies the same as, or close to that of, the signal (gain was reduced by about 20 dB), and least for precursors with frequencies well removed from that of the signal (gain remained at around 40 dB). The tuning of the efferent effect filter (tuning extending 0.5-0.7 octaves above and below the signal frequency) is within the range obtained in humans using otoacoustic emissions (Lilaonitkul and Guinan, J Assoc Res Otolaryngol 10:459-470, 2009; Zhao and Dhar, J Neurophysiol 108:25-30, 2012). The 10 dB bandwidth of the efferent-effect filter at 4000 Hz was about 1300 Hz (Q(10) of 3.1). The FDMC method can be used to provide an unbiased measure of the bandwidth of the efferent effect filter using ipsilateral efferent stimulation.
通过内侧橄榄耳蜗束的传出反馈实现的耳蜗增益降低具有频率特异性(吉南,《耳鼻喉头颈外科当前观点》18:447 - 453,2010年)。本项针对人类的研究采用了固定时长掩蔽曲线心理声学方法(亚辛等人,《美国声学学会杂志》133:4145 - 4155,2013a;亚辛等人,《听力的基本方面:生理学与感知》,第39 - 46页,2013b;亚辛等人,《神经科学杂志》34:15319 - 15326,2014年)来估计耳蜗水平传出效应的频率特异性。掩蔽声加信号刺激的总时长为25毫秒,在约31 - 43毫秒的传出起始延迟范围内(詹姆斯等人,《临床耳鼻喉科学》27:106 - 112,2002年)。在不存在或存在同侧60分贝声压级、以2.5至5.5千赫之间的频率为中心的160毫秒前导音(200赫兹带宽)的情况下,获取了4千赫信号阈值时的掩蔽声水平(4.0或1.8千赫)。对于频率与信号相同或接近的前导音,传出介导的耳蜗增益降低最大(增益降低约20分贝),而对于频率与信号相差较大的前导音,增益降低最小(增益保持在约40分贝左右)。传出效应滤波器的调谐(调谐范围在信号频率上下0.5 - 0.7倍频程)在使用耳声发射在人类中获得的范围内(利拉奥尼库尔和吉南,《耳鼻咽喉研究学会杂志》10:459 - 470,2009年;赵和达尔,《神经生理学杂志》108:25 - 30,2012年)。4000赫兹时传出效应滤波器的10分贝带宽约为1300赫兹(品质因数Q(10)为3.1)。固定时长掩蔽曲线方法可用于通过同侧传出刺激提供传出效应滤波器带宽的无偏测量。