Yuan Bing, Shin Joong-Won, Bernstein Elliot R
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA.
Division of Chemistry and Biological Sciences, Governors State University, University Park, Illinois 60484-0975, USA.
J Chem Phys. 2016 Apr 14;144(14):144315. doi: 10.1063/1.4945624.
A 118 nm laser is employed as a high energy, single photon (10.51 eV/photon) source for study of the dynamics and fragmentation of the ammonia borane (NH3BH3) cation and its cluster ions through time of flight mass spectrometry. The behavior of ammonia ion and its cluster ions is also investigated under identical conditions in order to explicate the ammonia borane results. Charge distributions, molecular orbitals, and spin densities for (NH3BH3)n and its cations are explored at both the second-order perturbation theory (MP2) and complete active space self-consistent field (CASSCF) theory levels. Initial dissociation mechanisms and potential energy surfaces for ionized NH3BH3, NH3, and their clusters are calculated at the MP2/6-311++G(d,p) level. Protonated clusters (NH3)xH(+) dominate ammonia cluster mass spectra: our calculations show that formation of (NH3)n-1H(+) and NH2 from the nascent (NH3)n(+) has the lowest energy barrier for the system. The only common features for the (NH3)n(+) and (NH3BH3)n(+) mass spectra under these conditions are found to be NHy(+) (y = 0,…,4) at m/z = 14-18. Molecular ions with both (11)B and (10)B isotopes are observed, and therefore, product ions observed for the (NH3BH3)n cluster system derive from (NH3BH3)n clusters themselves, not from the NH3 moiety of NH3BH3 alone. NH3BH2(+) is the most abundant ionization product in the (NH3BH3)n(+) cluster spectra: calculations support that for NH3BH3(+), an H atom is lost from the BH3 moiety with an energy barrier of 0.67 eV. For (NH3BH3)2(+) and (NH3BH3)3(+) clusters, a B(δ+)⋯H(δ-)⋯(δ-)H⋯(δ+)B bond can form in the respective cluster ions, generating a lower energy, more stable ion structure. The first step in the (NH3BH3)n(+) (n = 2, 3) dissociation is the breaking of the B(δ+)⋯H(δ-)⋯(δ-)H⋯(δ+)B moiety, leading to the subsequent release of H2 from the latter cluster ion. The overall reaction mechanisms calculated are best represented and understood employing a CASSCF natural bond orbital description of the valence electron distribution for the various clusters and monomers. Comparison of the present results with those found for solid NH3BH3 suggests that NH3BH3 can be a good hydrogen storage material.
采用波长为118 nm的激光作为高能量单光子(10.51 eV/光子)源,通过飞行时间质谱研究氨硼烷(NH₃BH₃)阳离子及其团簇离子的动力学和碎片化过程。在相同条件下,也对氨离子及其团簇离子的行为进行了研究,以便阐明氨硼烷的研究结果。在二阶微扰理论(MP2)和完全活性空间自洽场(CASSCF)理论水平上,探索了(NH₃BH₃)ₙ及其阳离子的电荷分布、分子轨道和自旋密度。在MP2/6 - 311++G(d,p)水平上,计算了离子化的NH₃BH₃、NH₃及其团簇的初始解离机制和势能面。质子化团簇(NH₃)ₓH⁺主导氨团簇质谱:我们的计算表明,对于新生的(NH₃)ₙ⁺,形成(NH₃)ₙ₋₁H⁺和NH₂的能量势垒最低。在这些条件下,(NH₃)ₙ⁺和(NH₃BH₃)ₙ⁺质谱的唯一共同特征是在m/z = 14 - 18处出现NHy⁺(y = 0,…,4)。观察到同时含有¹¹B和¹⁰B同位素的分子离子,因此,在(NH₃BH₃)ₙ团簇体系中观察到的产物离子源自(NH₃BH₃)ₙ团簇本身,而不仅仅来自NH₃BH₃的NH₃部分。NH₃BH₂⁺是(NH₃BH₃)ₙ⁺团簇谱中最丰富的电离产物:计算结果支持,对于NH₃BH₃⁺,一个H原子从BH₃部分失去,能量势垒为0.67 eV。对于(NH₃BH₃)₂⁺和(NH₃BH₃)₃⁺团簇,在各自的团簇离子中可以形成B(δ⁺)⋯H(δ⁻)⋯(δ⁻)H⋯(δ⁺)B键,产生能量更低、更稳定的离子结构。(NH₃BH₃)ₙ⁺(n = 2,3)解离的第一步是B(δ⁺)⋯H(δ⁻)⋯(δ⁻)H⋯(δ⁺)B部分的断裂,导致随后从后一个团簇离子中释放出H₂。采用CASSCF自然键轨道对各种团簇和单体的价电子分布进行描述,能最好地表示和理解计算得到的整体反应机制。将目前的结果与固体NH₃BH₃的结果进行比较表明,NH₃BH₃可以是一种良好的储氢材料。