Li Qian, Wall Stephanie B, Ren Changchun, Velten Markus, Hill Cynthia L, Locy Morgan L, Rogers Lynette K, Tipple Trent E
1 Neonatal Redox Biology Laboratory.
2 Division of Neonatology, and.
Am J Respir Cell Mol Biol. 2016 Sep;55(3):419-28. doi: 10.1165/rcmb.2015-0228OC.
Oxygen toxicity and antioxidant deficiencies contribute to the development of bronchopulmonary dysplasia. Aurothioglucose (ATG) and auranofin potently inhibit thioredoxin reductase-1 (TrxR1), and TrxR1 disruption activates nuclear factor E2-related factor 2 (Nrf2), a regulator of endogenous antioxidant responses. We have shown previously that ATG safely and effectively prevents lung injury in adult murine models, likely via Nrf2-dependent mechanisms. The current studies tested the hypothesis that ATG would attenuate hyperoxia-induced lung developmental deficits in newborn mice. Newborn C3H/HeN mice were treated with a single dose of ATG or saline within 12 hours of birth and were exposed to either room air or hyperoxia (85% O2). In hyperoxia, ATG potently inhibited TrxR1 activity in newborn murine lungs, attenuated decreases in body weight, increased the transcription of Nrf2-regulated genes nicotinamide adenine dinucleotide phosphate reduced quinone oxidoreductase-1 (NQO1) and heme oxygenase 1, and attenuated alterations in alveolar development. To determine the impact of TrxR1 inhibition on Nrf2 activation in vitro, murine alveolar epithelial-12 cells were treated with auranofin, which inhibited TrxR1 activity, enhanced Nrf2 nuclear levels, and increased NQO1 and heme oxygenase 1 transcription. Our novel data indicate that a single injection of the TrxR1 inhibitor ATG attenuates hyperoxia-induced alterations in alveolar development in newborn mice. Furthermore, our data support a model in which the effects of ATG treatment likely involve Nrf2 activation, which is consistent with our findings in other lung injury models. We conclude that TrxR1 represents a novel therapeutic target to prevent oxygen-mediated neonatal lung injury.
氧中毒和抗氧化剂缺乏会导致支气管肺发育不良的发生。金硫葡萄糖(ATG)和金诺芬能有效抑制硫氧还蛋白还原酶-1(TrxR1),而TrxR1的破坏会激活核因子E2相关因子2(Nrf2),这是一种内源性抗氧化反应的调节因子。我们之前已经表明,ATG在成年小鼠模型中能安全有效地预防肺损伤,可能是通过依赖Nrf2的机制。当前的研究检验了ATG会减轻新生小鼠高氧诱导的肺发育缺陷这一假设。新生的C3H/HeN小鼠在出生后12小时内接受单剂量的ATG或生理盐水治疗,并暴露于室内空气或高氧环境(85% O2)中。在高氧环境下,ATG能有效抑制新生小鼠肺中的TrxR1活性,减轻体重下降,增加Nrf2调节基因烟酰胺腺嘌呤二核苷酸磷酸还原醌氧化还原酶-1(NQO1)和血红素加氧酶1的转录,并减轻肺泡发育的改变。为了确定体外TrxR1抑制对Nrf2激活的影响,用金诺芬处理小鼠肺泡上皮-12细胞,金诺芬抑制了TrxR1活性,提高了Nrf2的核水平,并增加了NQO1和血红素加氧酶1的转录。我们的新数据表明,单次注射TrxR1抑制剂ATG可减轻新生小鼠高氧诱导的肺泡发育改变。此外,我们的数据支持一种模型,即ATG治疗的效果可能涉及Nrf2激活,这与我们在其他肺损伤模型中的发现一致。我们得出结论,TrxR1是预防氧介导的新生儿肺损伤的一个新的治疗靶点。