Suppr超能文献

微生物诱导的新生儿肺中氧化还原失衡可通过活菌治疗得到改善。

Microbial-induced Redox Imbalance in the Neonatal Lung Is Ameliorated by Live Biotherapeutics.

机构信息

Division of Neonatology, Department of Pediatrics.

Heersink School of Medicine, and.

出版信息

Am J Respir Cell Mol Biol. 2023 Mar;68(3):267-278. doi: 10.1165/rcmb.2021-0508OC.

Abstract

Bronchopulmonary dysplasia (BPD) is a common lung disease of premature infants. Hyperoxia exposure and microbial dysbiosis are contributors to BPD development. However, the mechanisms linking pulmonary microbial dysbiosis to worsening lung injury are unknown. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that regulates oxidative stress responses and modulates hyperoxia-induced lung injury. We hypothesized that airway dysbiosis would attenuate Nrf2-dependent antioxidant function, resulting in a more severe phenotype of BPD. Here, we show that preterm infants with a Gammaproteobacteria-predominant dysbiosis have increased endotoxin in tracheal aspirates, and mice monocolonized with the representative Gammaproteobacteria show increased tissue damage compared with germ-free (GF) control mice. Furthermore, we show Nrf2-deficient mice have worse lung structure and function after exposure to hyperoxia when the airway microbiome is augmented with . To confirm the disease-initiating potential of airway dysbiosis, we developed a novel humanized mouse model by colonizing GF mice with tracheal aspirates from human infants with or without severe BPD, producing gnotobiotic mice with BPD-associated and non-BPD-associated lung microbiomes. After hyperoxia exposure, BPD-associated mice demonstrated a more severe BPD phenotype and increased expression of -regulated genes, compared with GF and non-BPD-associated mice. Furthermore, augmenting -mediated antioxidant activity by supporting colonization with species improved dysbiotic-augmented lung injury. Our results demonstrate that a lack of protective pulmonary microbiome signature attenuates an -mediated antioxidant response, which is augmented by a respiratory probiotic blend. We anticipate antioxidant pathways will be major targets of future microbiome-based therapeutics for respiratory disease.

摘要

支气管肺发育不良(BPD)是一种常见的早产儿肺部疾病。高氧暴露和微生物失调是 BPD 发展的原因。然而,将肺部微生物失调与肺部损伤恶化联系起来的机制尚不清楚。Nrf2(核因子红细胞 2 相关因子 2)是一种转录因子,可调节氧化应激反应并调节高氧诱导的肺损伤。我们假设气道失调会减弱 Nrf2 依赖性抗氧化功能,从而导致更严重的 BPD 表型。在这里,我们表明,以γ变形菌为主的肠道失调的早产儿气管抽吸物中内毒素增加,并且用代表γ变形菌的单定植小鼠与无菌(GF)对照小鼠相比,组织损伤增加。此外,我们表明,当气道微生物组中增加时,Nrf2 缺陷小鼠在暴露于高氧后肺结构和功能更差。为了确认气道失调的发病潜力,我们通过用来自患有严重 BPD 或无严重 BPD 的人类婴儿的气管抽吸物定植 GF 小鼠,开发了一种新型人源化小鼠模型,从而产生了具有 BPD 相关和非 BPD 相关肺部微生物组的无菌小鼠。在高氧暴露后,与 GF 和非 BPD 相关小鼠相比,BPD 相关小鼠表现出更严重的 BPD 表型和更多的 -调节基因表达。此外,通过支持与 物种的定植来增强 -介导的抗氧化活性可改善失调增强的肺损伤。我们的结果表明,缺乏保护性肺部微生物组特征减弱了 -介导的抗氧化反应,而呼吸益生菌混合物可增强这种反应。我们预计抗氧化途径将成为未来基于微生物组的呼吸疾病治疗的主要目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc22/9989473/128ac03f1943/rcmb.2021-0508OCf1a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验