Suppr超能文献

Dps介导的DNA压缩中的滞后现象由伊辛模型描述。

Hysteresis in DNA compaction by Dps is described by an Ising model.

作者信息

Vtyurina Natalia N, Dulin David, Docter Margreet W, Meyer Anne S, Dekker Nynke H, Abbondanzieri Elio A

机构信息

Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands.

Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands

出版信息

Proc Natl Acad Sci U S A. 2016 May 3;113(18):4982-7. doi: 10.1073/pnas.1521241113. Epub 2016 Apr 18.

Abstract

In all organisms, DNA molecules are tightly compacted into a dynamic 3D nucleoprotein complex. In bacteria, this compaction is governed by the family of nucleoid-associated proteins (NAPs). Under conditions of stress and starvation, an NAP called Dps (DNA-binding protein from starved cells) becomes highly up-regulated and can massively reorganize the bacterial chromosome. Although static structures of Dps-DNA complexes have been documented, little is known about the dynamics of their assembly. Here, we use fluorescence microscopy and magnetic-tweezers measurements to resolve the process of DNA compaction by Dps. Real-time in vitro studies demonstrated a highly cooperative process of Dps binding characterized by an abrupt collapse of the DNA extension, even under applied tension. Surprisingly, we also discovered a reproducible hysteresis in the process of compaction and decompaction of the Dps-DNA complex. This hysteresis is extremely stable over hour-long timescales despite the rapid binding and dissociation rates of Dps. A modified Ising model is successfully applied to fit these kinetic features. We find that long-lived hysteresis arises naturally as a consequence of protein cooperativity in large complexes and provides a useful mechanism for cells to adopt unique epigenetic states.

摘要

在所有生物体中,DNA分子都紧密压缩成动态的三维核蛋白复合体。在细菌中,这种压缩由类核相关蛋白(NAPs)家族控制。在应激和饥饿条件下,一种名为Dps(饥饿细胞中的DNA结合蛋白)的NAP会高度上调,并能大规模重组细菌染色体。尽管已记录了Dps-DNA复合体的静态结构,但对其组装动力学却知之甚少。在此,我们使用荧光显微镜和磁镊测量来解析Dps压缩DNA的过程。实时体外研究表明,Dps结合是一个高度协同的过程,其特征是即使在施加张力的情况下,DNA伸展也会突然塌陷。令人惊讶的是,我们还在Dps-DNA复合体的压缩和解压缩过程中发现了可重复的滞后现象。尽管Dps的结合和解离速率很快,但这种滞后现象在长达数小时的时间尺度上极其稳定。一个修正的伊辛模型成功地用于拟合这些动力学特征。我们发现,长寿命滞后现象是大复合体中蛋白质协同作用的自然结果,并为细胞采用独特的表观遗传状态提供了一种有用的机制。

相似文献

1
Hysteresis in DNA compaction by Dps is described by an Ising model.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):4982-7. doi: 10.1073/pnas.1521241113. Epub 2016 Apr 18.
2
Dps protects cells against multiple stresses during stationary phase.
J Bacteriol. 2004 Jul;186(13):4192-8. doi: 10.1128/JB.186.13.4192-4198.2004.
5
Global DNA Compaction in Stationary-Phase Bacteria Does Not Affect Transcription.
Cell. 2018 Aug 23;174(5):1188-1199.e14. doi: 10.1016/j.cell.2018.06.049. Epub 2018 Jul 26.
8
10
The DNA-Binding Protein from Starved Cells (Dps) Utilizes Dual Functions To Defend Cells against Multiple Stresses.
J Bacteriol. 2015 Oct;197(19):3206-15. doi: 10.1128/JB.00475-15. Epub 2015 Jul 27.

引用本文的文献

1
Biomolecular condensates as stress sensors and modulators of bacterial signaling.
PLoS Pathog. 2024 Aug 15;20(8):e1012413. doi: 10.1371/journal.ppat.1012413. eCollection 2024 Aug.
2
Bridging DNA contacts allow Dps from E. coli to condense DNA.
Nucleic Acids Res. 2024 May 8;52(8):4456-4465. doi: 10.1093/nar/gkae223.
3
Bridging DNA contacts allow Dps from to condense DNA.
bioRxiv. 2024 Jan 25:2024.01.22.576774. doi: 10.1101/2024.01.22.576774.
4
Getting Closer to Decrypting the Phase Transitions of Bacterial Biomolecules.
Biomolecules. 2022 Jun 28;12(7):907. doi: 10.3390/biom12070907.
5
Dps Is a Universally Conserved Dual-Action DNA-Binding and Ferritin Protein.
J Bacteriol. 2022 May 17;204(5):e0003622. doi: 10.1128/jb.00036-22. Epub 2022 Apr 5.
9
The Affective Ising Model: A computational account of human affect dynamics.
PLoS Comput Biol. 2020 May 15;16(5):e1007860. doi: 10.1371/journal.pcbi.1007860. eCollection 2020 May.
10
More than just a phase: the search for membraneless organelles in the bacterial cytoplasm.
Curr Genet. 2019 Jun;65(3):691-694. doi: 10.1007/s00294-018-00927-x. Epub 2019 Jan 2.

本文引用的文献

2
The DNA-Binding Protein from Starved Cells (Dps) Utilizes Dual Functions To Defend Cells against Multiple Stresses.
J Bacteriol. 2015 Oct;197(19):3206-15. doi: 10.1128/JB.00475-15. Epub 2015 Jul 27.
3
Function of nucleoid-associated proteins in chromosome structuring and transcriptional regulation.
J Mol Microbiol Biotechnol. 2014;24(5-6):316-31. doi: 10.1159/000368850. Epub 2015 Feb 17.
4
Elongation-Competent Pauses Govern the Fidelity of a Viral RNA-Dependent RNA Polymerase.
Cell Rep. 2015 Feb 17;10(6):983-992. doi: 10.1016/j.celrep.2015.01.031. Epub 2015 Feb 12.
5
A force calibration standard for magnetic tweezers.
Rev Sci Instrum. 2014 Dec;85(12):123114. doi: 10.1063/1.4904148.
6
An optimized software framework for real-time, high-throughput tracking of spherical beads.
Rev Sci Instrum. 2014 Oct;85(10):103712. doi: 10.1063/1.4898178.
7
Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments.
Nucleic Acids Res. 2014 Oct;42(18):e137. doi: 10.1093/nar/gku677. Epub 2014 Aug 19.
8
Collective behaviours: from biochemical kinetics to electronic circuits.
Sci Rep. 2013 Dec 10;3:3458. doi: 10.1038/srep03458.
10
The Escherichia coli Nucleoid in Stationary Phase.
Adv Appl Microbiol. 2013;83:69-86. doi: 10.1016/B978-0-12-407678-5.00002-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验