Suppr超能文献

全球基因表达变化对下游分析的影响。

The Influence of the Global Gene Expression Shift on Downstream Analyses.

作者信息

Xu Qifeng, Zhang Xuegong

机构信息

MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing, China.

Department of Aircraft Spare Management, Air Force Logistic College, Xuzhou, Jiangsu, China.

出版信息

PLoS One. 2016 Apr 19;11(4):e0153903. doi: 10.1371/journal.pone.0153903. eCollection 2016.

Abstract

The assumption that total abundance of RNAs in a cell is roughly the same in different cells is underlying most studies based on gene expression analyses. But experiments have shown that changes in the expression of some master regulators such as c-MYC can cause global shift in the expression of almost all genes in some cell types like cancers. Such shift will violate this assumption and can cause wrong or biased conclusions for standard data analysis practices, such as detection of differentially expressed (DE) genes and molecular classification of tumors based on gene expression. Most existing gene expression data were generated without considering this possibility, and are therefore at the risk of having produced unreliable results if such global shift effect exists in the data. To evaluate this risk, we conducted a systematic study on the possible influence of the global gene expression shift effect on differential expression analysis and on molecular classification analysis. We collected data with known global shift effect and also generated data to simulate different situations of the effect based on a wide collection of real gene expression data, and conducted comparative studies on representative existing methods. We observed that some DE analysis methods are more tolerant to the global shift while others are very sensitive to it. Classification accuracy is not sensitive to the shift and actually can benefit from it, but genes selected for the classification can be greatly affected.

摘要

细胞中RNA的总丰度在不同细胞中大致相同这一假设是大多数基于基因表达分析的研究的基础。但实验表明,某些主调控因子(如c-MYC)表达的变化会在某些细胞类型(如癌症)中导致几乎所有基因表达的全局变化。这种变化将违反这一假设,并可能导致标准数据分析方法得出错误或有偏差的结论,例如差异表达(DE)基因的检测以及基于基因表达的肿瘤分子分类。大多数现有的基因表达数据在生成时并未考虑这种可能性,因此,如果数据中存在这种全局变化效应,那么这些数据就有产生不可靠结果的风险。为了评估这种风险,我们对全局基因表达变化效应在差异表达分析和分子分类分析方面的可能影响进行了系统研究。我们收集了具有已知全局变化效应的数据,并基于大量真实基因表达数据生成数据以模拟该效应的不同情况,还对具有代表性的现有方法进行了比较研究。我们观察到,一些DE分析方法对全局变化更具耐受性,而另一些则对其非常敏感。分类准确性对这种变化不敏感,实际上还能从中受益,但用于分类的基因可能会受到很大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fb8/4836657/917375e9bd91/pone.0153903.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验