Suppr超能文献

附属骨骼肌质量:人体测量预测方程的建立与验证

Appendicular Skeletal Muscle Mass: Development and Validation of Anthropometric Prediction Equations.

作者信息

Visvanathan R, Yu S, Field J, Chapman I, Adams R, Wittert G, Visvanathan T

机构信息

1. Renuka Visvanathan MBBS PhD, Aged and Extended Care Services, Level 8B Main Building, The Queen Elizabeth Hospital, 21 Woodville Road, Woodville South, South Australia 5011. University of Adelaide, Adelaide, South Australia, Phone:+61 8 8222 8592; Fax:+61 8 8222 8593, Email :

出版信息

J Frailty Aging. 2012;1(4):147-51. doi: 10.14283/jfa.2012.23.

Abstract

OBJECTIVES

Sarcopenia is the loss of muscle mass and function seen with increasing age. Central to making the diagnosis of sarcopenia is the assessment of appendicular skeletal muscle mass (ASM). The objective of this study was to develop and validate novel anthropometric prediction equations (PEs) for ASM that would be useful in primary or aged care.

DESIGN

PEs were developed using best subset regression analysis. Three best performing PEs (PE1, PE2, PE3) were selected and validated using the Bland-Altman and Sheiner and Beal methods.

SETTING

Community dwelling adults in South Australia.

PARTICIPANTS

188 healthy subjects were involved in the development study. 2275 older(age ≥ 50years) subjects were involved in the validation study.

MEASUREMENTS

ASM was assessed using dual x-ray abosrptiometry (DEXA). Weight and height was measured and body mass index (BMI) estimated.

RESULTS

A strong correlation between PE derived ASM and the DEXA derived ASM was seen for the three selected PEs. PE3: ASM= 10.047427 + 0.353307(weight) - 0.621112(BMI) - 0.022741(age) + 5.096201(if male) performed the best. PE3 over-estimated (P<0.001) ASM by 0.36 kg (95% CI 0.28-0.44 Kg) and the adjusted R2 was 0.869. The 95% limit of agreement was between -3.5 and 4.35 kg and the standard error of the estimate was 1.95. The root mean square error was 1.91(95% CI 1.80-2.01). PE3 also performed the best across the various age (50-65, 65-<80, 80+ years) and weight (BMI <18.5, 18.5-24.9, 25-29.9, ≥30 kg/m2) groups.

CONCLUSIONS

A new anthropometric PE for ASM has been developed for use in primary or aged care but is specific to Caucasian population groups.

摘要

目的

肌肉减少症是随着年龄增长而出现的肌肉量和功能丧失。诊断肌肉减少症的核心是评估四肢骨骼肌质量(ASM)。本研究的目的是开发并验证用于ASM的新型人体测量预测方程(PEs),这些方程将在初级或老年护理中发挥作用。

设计

使用最佳子集回归分析开发PEs。选择了三个表现最佳的PEs(PE1、PE2、PE3),并使用Bland-Altman方法以及Sheiner和Beal方法进行验证。

设置

南澳大利亚的社区居住成年人。

参与者

188名健康受试者参与了开发研究。2275名年龄较大(年龄≥50岁)的受试者参与了验证研究。

测量

使用双能X线吸收法(DEXA)评估ASM。测量体重和身高并估算体重指数(BMI)。

结果

对于所选的三个PEs,由PE得出的ASM与由DEXA得出的ASM之间存在很强的相关性。PE3:ASM = 10.047427 + 0.353307(体重) - 0.621112(BMI) - 0.022741(年龄) + 5.096201(如果为男性)表现最佳。PE3高估(P<0.001)ASM 0.36千克(95%可信区间0.28 - 0.44千克),调整后的R2为0.869。95%的一致性界限在 - 3.5至4.35千克之间,估计的标准误差为1.95。均方根误差为1.91(95%可信区间1.80 - 2.01)。PE3在各个年龄组(50 - 65岁、65 - <80岁、80岁以上)和体重组(BMI <18.5、18.5 - 24.9、25 - 29.9、≥30千克/平方米)中也表现最佳。

结论

已开发出一种用于ASM的新型人体测量PE,用于初级或老年护理,但该方程特定适用于白种人群体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验