Zhang Yu, An Lin, Yue Feng, Hardison Ross C
Dept. of Statistics, Penn State University, 325 Thomas Building, University Park, PA 16803, USA
Bioinformatics and Genomics Program, Huck Institutes of the Life Sciences, Penn State University, 101 Huck Life Sciences Building, University Park, PA 16802, USA.
Nucleic Acids Res. 2016 Aug 19;44(14):6721-31. doi: 10.1093/nar/gkw278. Epub 2016 Apr 19.
Advanced sequencing technologies have generated a plethora of data for many chromatin marks in multiple tissues and cell types, yet there is lack of a generalized tool for optimal utility of those data. A major challenge is to quantitatively model the epigenetic dynamics across both the genome and many cell types for understanding their impacts on differential gene regulation and disease. We introduce IDEAS, an integrative and discriminative epigenome annotation system, for jointly characterizing epigenetic landscapes in many cell types and detecting differential regulatory regions. A key distinction between our method and existing state-of-the-art algorithms is that IDEAS integrates epigenomes of many cell types simultaneously in a way that preserves the position-dependent and cell type-specific information at fine scales, thereby greatly improving segmentation accuracy and producing comparable annotations across cell types.
先进的测序技术已为多种组织和细胞类型中的许多染色质标记生成了大量数据,但缺乏一个能充分利用这些数据的通用工具。一个主要挑战是对整个基因组和多种细胞类型的表观遗传动力学进行定量建模,以了解它们对基因差异调控和疾病的影响。我们引入了IDEAS,这是一个综合且具有区分性的表观基因组注释系统,用于联合表征多种细胞类型中的表观遗传景观并检测差异调控区域。我们的方法与现有最先进算法的一个关键区别在于,IDEAS以一种在精细尺度上保留位置依赖性和细胞类型特异性信息的方式同时整合多种细胞类型的表观基因组,从而极大地提高了分割精度并在不同细胞类型间生成可比的注释。