Berkemeier Thomas, Steimer Sarah S, Krieger Ulrich K, Peter Thomas, Pöschl Ulrich, Ammann Markus, Shiraiwa Manabu
Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128 Mainz, Germany.
Phys Chem Chem Phys. 2016 May 14;18(18):12662-74. doi: 10.1039/c6cp00634e. Epub 2016 Apr 20.
Heterogeneous and multiphase reactions of ozone are important pathways for chemical ageing of atmospheric organic aerosols. To demonstrate and quantify how moisture-induced phase changes can affect the gas uptake and chemical transformation of organic matter, we apply a kinetic multi-layer model to a comprehensive experimental data set of ozone uptake by shikimic acid. The bulk diffusion coefficients were determined to be 10(-12) cm(2) s(-1) for ozone and 10(-20) cm(2) s(-1) for shikimic acid under dry conditions, increasing by several orders of magnitude with increasing relative humidity (RH) due to phase changes from amorphous solid over semisolid to liquid. Consequently, the reactive uptake of ozone progresses through different kinetic regimes characterised by specific limiting processes and parameters. At high RH, ozone uptake is driven by reaction throughout the particle bulk; at low RH it is restricted to reaction near the particle surface and kinetically limited by slow diffusion and replenishment of unreacted organic molecules. Our results suggest that the chemical reaction mechanism involves long-lived reactive oxygen intermediates, likely primary ozonides or O atoms, which may provide a pathway for self-reaction and catalytic destruction of ozone at the surface. Slow diffusion and ozone destruction can effectively shield reactive organic molecules in the particle bulk from degradation. We discuss the potential non-orthogonality of kinetic parameters, and show how this problem can be solved by using comprehensive experimental data sets to constrain the kinetic model, providing mechanistic insights into the coupling of transport, phase changes, and chemical reactions of multiple species in complex systems.
臭氧的非均相和多相反应是大气有机气溶胶化学老化的重要途径。为了证明和量化水分诱导的相变如何影响有机物的气体吸收和化学转化,我们将动力学多层模型应用于莽草酸对臭氧吸收的综合实验数据集。在干燥条件下,臭氧的体扩散系数被确定为10^(-12) cm² s^(-1),莽草酸的体扩散系数为10^(-20) cm² s^(-1),随着相对湿度(RH)的增加,由于从无定形固体到半固体再到液体的相变,扩散系数增加了几个数量级。因此,臭氧的反应性吸收通过以特定限制过程和参数为特征的不同动力学机制进行。在高相对湿度下,臭氧吸收由整个颗粒体中的反应驱动;在低相对湿度下,它仅限于颗粒表面附近的反应,并且在动力学上受到未反应有机分子缓慢扩散和补充的限制。我们的结果表明,化学反应机制涉及长寿命的活性氧中间体,可能是初级臭氧化物或O原子,这可能为表面臭氧的自反应和催化破坏提供一条途径。缓慢的扩散和臭氧破坏可以有效地保护颗粒体中的反应性有机分子不被降解。我们讨论了动力学参数可能的非正交性,并展示了如何通过使用综合实验数据集来约束动力学模型来解决这个问题,从而为复杂系统中多种物质的传输、相变和化学反应的耦合提供机理见解。