Suppr超能文献

层流诱导的脂双层混合行为:混合能、相、堆积几何形状和可逆性的检验。

Crowding-Induced Mixing Behavior of Lipid Bilayers: Examination of Mixing Energy, Phase, Packing Geometry, and Reversibility.

机构信息

Sandia National Laboratories , P.O. Box 969, Livermore, California 94551, United States.

出版信息

Langmuir. 2016 May 10;32(18):4688-97. doi: 10.1021/acs.langmuir.6b00831. Epub 2016 Apr 26.

Abstract

In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu(2+), chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domains of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10(-22) to 1.5 × 10(-20) J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. The mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.

摘要

为了从第一性原理出发开发一个通用的热力学模型来描述脂质膜的混合行为,我们研究了通过靶向结合小(绿色荧光蛋白(GFP))和大(纳米脂蛋白颗粒(NLPs))结构到相分离脂质双层的特定相来诱导的脂质混合。通过将具有相分离的亚氨基二乙酸(IDA)功能化脂质掺入由 DPPC、DOPC 和胆固醇组成的三元脂质混合物中来靶向这些相。GFP 和 NLPs 含有组氨酸标签,通过金属 Cu(2+)螯合机制与这些脂质的 IDA 部分结合。在巨大的单层囊泡(GUV)中,GFP 和 NLPs 与含有 DPIDA 的双层的 Lo 域结合,并与含有 DOIDA 的双层的 Ld 区域结合。在 DPIDA 或 DOIDA 的浓度足够大时,结合的 GFP 和 NLPs 诱导脂质混合。当发现较小的 GFP 和较大的 NLPs 的统计混合分布作为拥挤能的函数时,热力学模型的有效性得到了证实,这与每种 GUV 组成的相同趋势线相吻合。此外,这种分析的结果表明,由 DOPC、DPPC 和胆固醇组成的三元脂质双层的混合自由能在观察到的组成范围内从 7.9×10(-22) 到 1.5×10(-20) J/脂质变化,随着胆固醇浓度的增加而降低。发现 NLPs 的最大堆积密度和相关的最大拥挤压力似乎存在,这表明了圆形堆积。尽管投影面积有很大差异,但 NLP1 和 NLP3 引起的混合相似,这与单价(一个组氨酸标签)与二价(两个组氨酸标签)表面相互作用分别分析一致。除了 GUV 之外,NLP 在平面支撑脂质双层上的结合和诱导混合行为也被观察到。混合过程是可逆的,在添加 EDTA 去除 NLP 后,Lo 域再次出现。

相似文献

1
Crowding-Induced Mixing Behavior of Lipid Bilayers: Examination of Mixing Energy, Phase, Packing Geometry, and Reversibility.
Langmuir. 2016 May 10;32(18):4688-97. doi: 10.1021/acs.langmuir.6b00831. Epub 2016 Apr 26.
2
Dynamics of Crowding-Induced Mixing in Phase Separated Lipid Bilayers.
J Phys Chem B. 2016 Nov 3;120(43):11180-11190. doi: 10.1021/acs.jpcb.6b07119. Epub 2016 Oct 25.
3
Targeting proteins to liquid-ordered domains in lipid membranes.
Langmuir. 2011 Feb 15;27(4):1457-62. doi: 10.1021/la1041458. Epub 2010 Dec 14.
5
Exploring the raft-hypothesis by probing planar bilayer patches of free-standing giant vesicles at nanoscale resolution, with and without Na,K-ATPase.
Biochim Biophys Acta. 2016 Dec;1858(12):3041-3049. doi: 10.1016/j.bbamem.2016.09.001. Epub 2016 Sep 9.
6
Coexisting stripe- and patch-shaped domains in giant unilamellar vesicles.
Biochemistry. 2006 Oct 3;45(39):11819-26. doi: 10.1021/bi060808h.
8
Fluorescent probe partitioning in GUVs of binary phospholipid mixtures: implications for interpreting phase behavior.
Biochim Biophys Acta. 2012 Jan;1818(1):19-26. doi: 10.1016/j.bbamem.2011.09.006. Epub 2011 Sep 16.
9
Phase separation in pore-spanning membranes induced by differences in surface adhesion.
Phys Chem Chem Phys. 2020 May 6;22(17):9308-9315. doi: 10.1039/d0cp00335b.
10
Kinetics of lipid mixing between bicelles and nanolipoprotein particles.
Biophys Chem. 2015 Feb;197:47-52. doi: 10.1016/j.bpc.2015.01.006. Epub 2015 Jan 23.

引用本文的文献

1
Interactions of HIV gp41's membrane-proximal external region and transmembrane domain with phospholipid membranes from P NMR.
Biochim Biophys Acta Biomembr. 2021 Nov 1;1863(11):183723. doi: 10.1016/j.bbamem.2021.183723. Epub 2021 Aug 2.
2
Liquid-like protein interactions catalyse assembly of endocytic vesicles.
Nat Cell Biol. 2021 Apr;23(4):366-376. doi: 10.1038/s41556-021-00646-5. Epub 2021 Apr 5.
3
Functional lipid pairs as building blocks of phase-separated membranes.
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4749-4757. doi: 10.1073/pnas.1919264117. Epub 2020 Feb 18.
4
Lipid and Protein Transfer between Nanolipoprotein Particles and Supported Lipid Bilayers.
Langmuir. 2019 Sep 17;35(37):12071-12078. doi: 10.1021/acs.langmuir.9b01288. Epub 2019 Sep 6.
5
Structure Versus Stochasticity-The Role of Molecular Crowding and Intrinsic Disorder in Membrane Fission.
J Mol Biol. 2018 Aug 3;430(16):2293-2308. doi: 10.1016/j.jmb.2018.03.024. Epub 2018 Apr 5.
6
Dynamics of Crowding-Induced Mixing in Phase Separated Lipid Bilayers.
J Phys Chem B. 2016 Nov 3;120(43):11180-11190. doi: 10.1021/acs.jpcb.6b07119. Epub 2016 Oct 25.

本文引用的文献

1
Spectroscopic Characterization of Structural Changes in Membrane Scaffold Proteins Entrapped within Mesoporous Silica Gel Monoliths.
ACS Appl Mater Interfaces. 2015 Apr 29;7(16):8640-9. doi: 10.1021/acsami.5b00898. Epub 2015 Apr 20.
2
Designing lipids for selective partitioning into liquid ordered membrane domains.
Soft Matter. 2015 Apr 28;11(16):3241-50. doi: 10.1039/c4sm02856b.
5
Steric pressure between membrane-bound proteins opposes lipid phase separation.
J Am Chem Soc. 2013 Jan 30;135(4):1185-8. doi: 10.1021/ja3099867. Epub 2013 Jan 17.
6
Membrane bending by protein-protein crowding.
Nat Cell Biol. 2012 Sep;14(9):944-9. doi: 10.1038/ncb2561. Epub 2012 Aug 19.
7
Fluorescent probe partitioning in GUVs of binary phospholipid mixtures: implications for interpreting phase behavior.
Biochim Biophys Acta. 2012 Jan;1818(1):19-26. doi: 10.1016/j.bbamem.2011.09.006. Epub 2011 Sep 16.
8
Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs.
Mol Cell Proteomics. 2011 Sep;10(9):M111.010876. doi: 10.1074/mcp.M111.010876. Epub 2011 Jun 29.
9
Reconstituted lipoprotein: a versatile class of biologically-inspired nanostructures.
ACS Nano. 2011 Jan 25;5(1):42-57. doi: 10.1021/nn103098m. Epub 2010 Dec 23.
10
Targeting proteins to liquid-ordered domains in lipid membranes.
Langmuir. 2011 Feb 15;27(4):1457-62. doi: 10.1021/la1041458. Epub 2010 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验