Suppr超能文献

重构脂蛋白:一类具有多功能的仿生纳米结构。

Reconstituted lipoprotein: a versatile class of biologically-inspired nanostructures.

机构信息

Department of Applied Science, University of California-Davis, Davis, California 95616, United States.

出版信息

ACS Nano. 2011 Jan 25;5(1):42-57. doi: 10.1021/nn103098m. Epub 2010 Dec 23.

Abstract

One of biology's most pervasive nanostructures, the phospholipid membrane, represents an ideal scaffold for a host of nanotechnology applications. Whether engineering biomimetic technologies or designing therapies to interface with the cell, this adaptable membrane can provide the necessary molecular-level control of membrane-anchored proteins, glycopeptides, and glycolipids. If appropriately prepared, these components can replicate in vitro or influence in vivo essential living processes such as signal transduction, mass transport, and chemical or energy conversion. To satisfy these requirements, a lipid-based, synthetic nanoscale architecture with molecular-level tunability is needed. In this regard, discrete lipid particles, including reconstituted high density lipoprotein (HDL), have emerged as a versatile and elegant solution. Structurally diverse, native biological HDLs exist as discoidal lipid bilayers of 5-8 nm diameter and lipid monolayer-coated spheres 10-15 nm in diameter, all belted by a robust scaffolding protein. These supramolecular assemblies can be reconstituted using simple self-assembly methods to incorporate a broad range of amphipathic molecular constituents, natural or artificial, and provide a generic platform for stabilization and transport of amphipathic and hydrophobic elements capable of docking with targets at biological or inorganic surfaces. In conjunction with top-down or bottom-up engineering approaches, synthetic HDL can be designed, arrayed, and manipulated for a host of applications including biochemical analyses and fundamental studies of molecular structure. Also highly biocompatible, these assemblies are suitable for medical diagnostics and therapeutics. The collection of efforts reviewed here focuses on laboratory methods by which synthetic HDLs are produced, the advantages conferred by their nanoscopic dimension, and current and emerging applications.

摘要

生物学中最普遍的纳米结构之一是磷脂膜,它是许多纳米技术应用的理想支架。无论是设计仿生技术还是设计与细胞相互作用的疗法,这种适应性强的膜都可以提供对膜锚定蛋白、糖肽和糖脂的必要的分子水平控制。如果适当制备,这些成分可以在体外复制或影响体内的基本生命过程,如信号转导、质量传递以及化学或能量转换。为了满足这些要求,需要一种具有分子水平可调性的基于脂质的合成纳米结构。在这方面,离散脂质颗粒,包括再构成的高密度脂蛋白(HDL),已经成为一种通用且优雅的解决方案。结构多样的天然生物 HDL 以 5-8nm 直径的盘状脂质双层和 10-15nm 直径的脂质单层涂层球体存在,所有这些都由坚固的支架蛋白所环绕。这些超分子组装体可以通过简单的自组装方法进行重组,以纳入广泛的两亲分子成分,无论是天然的还是人工的,并为稳定和运输能够与生物或无机表面上的靶标对接的两亲性和疏水性元件提供通用平台。与自上而下或自下而上的工程方法相结合,合成 HDL 可以进行设计、排列和操作,以实现多种应用,包括生化分析和分子结构的基础研究。这些组装体还具有高度的生物相容性,适用于医学诊断和治疗。这里综述的一系列研究集中于制备合成 HDL 的实验室方法、其纳米尺寸带来的优势以及当前和新兴的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验