Suppr超能文献

使用磷脂酰丝氨酸靶向纳米囊泡对胶质母细胞瘤进行光学和核成像。

Optical and nuclear imaging of glioblastoma with phosphatidylserine-targeted nanovesicles.

作者信息

Blanco Víctor M, Chu Zhengtao, LaSance Kathleen, Gray Brian D, Pak Koon Yan, Rider Therese, Greis Kenneth D, Qi Xiaoyang

机构信息

Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA.

Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.

出版信息

Oncotarget. 2016 May 31;7(22):32866-75. doi: 10.18632/oncotarget.8763.

Abstract

Multimodal tumor imaging with targeted nanoparticles potentially offers both enhanced specificity and sensitivity, leading to more precise cancer diagnosis and monitoring. We describe the synthesis and characterization of phenol-substituted, lipophilic orange and far-red fluorescent dyes and a simple radioiodination procedure to generate a dual (optical and nuclear) imaging probe. MALDI-ToF analyses revealed high iodination efficiency of the lipophilic reporters, achieved by electrophilic aromatic substitution using the chloramide 1,3,4,6-tetrachloro-3α,6α-diphenyl glycoluril (Iodogen) as the oxidizing agent in an organic/aqueous co-solvent mixture. Upon conjugation of iodine-127 or iodine-124-labeled reporters to tumor-targeting SapC-DOPS nanovesicles, optical (fluorescent) and PET imaging was performed in mice bearing intracranial glioblastomas. In addition, tumor vs non-tumor (normal brain) uptake was compared using iodine-125. These data provide proof-of-principle for the potential value of SapC-DOPS for multimodal imaging of glioblastoma, the most aggressive primary brain tumor.

摘要

使用靶向纳米颗粒的多模态肿瘤成像可能会提高特异性和灵敏度,从而实现更精确的癌症诊断和监测。我们描述了苯酚取代的亲脂性橙色和远红色荧光染料的合成与表征,以及一种简单的放射性碘化程序,以生成双模态(光学和核)成像探针。基质辅助激光解吸电离飞行时间(MALDI-ToF)分析显示,通过在有机/水混合共溶剂中使用氯酰胺1,3,4,6-四氯-3α,6α-二苯基甘脲(碘代甘脲,Iodogen)作为氧化剂进行亲电芳香取代,亲脂性报告分子具有较高的碘化效率。将碘-127或碘-124标记的报告分子与靶向肿瘤的SapC-DOPS纳米囊泡偶联后,对患有颅内胶质母细胞瘤的小鼠进行了光学(荧光)和正电子发射断层扫描(PET)成像。此外,使用碘-125比较了肿瘤与非肿瘤(正常脑)的摄取情况。这些数据为SapC-DOPS在胶质母细胞瘤(最具侵袭性的原发性脑肿瘤)多模态成像中的潜在价值提供了原理验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b83c/5078058/fc7af57a199b/oncotarget-07-32866-g001.jpg

相似文献

1
Optical and nuclear imaging of glioblastoma with phosphatidylserine-targeted nanovesicles.
Oncotarget. 2016 May 31;7(22):32866-75. doi: 10.18632/oncotarget.8763.
2
Detection of cancer cells using SapC-DOPS nanovesicles.
Mol Cancer. 2016 May 10;15(1):33. doi: 10.1186/s12943-016-0519-1.
3
5
Systemic delivery of SapC-DOPS has antiangiogenic and antitumor effects against glioblastoma.
Mol Ther. 2013 Aug;21(8):1517-25. doi: 10.1038/mt.2013.114. Epub 2013 Jun 4.
6
Development of PEGylated peptide probes conjugated with (18)F-labeled BODIPY for PET/optical imaging of MT1-MMP activity.
J Control Release. 2015 Dec 28;220(Pt A):476-483. doi: 10.1016/j.jconrel.2015.11.012. Epub 2015 Nov 11.
9
Targeting and cytotoxicity of SapC-DOPS nanovesicles in pancreatic cancer.
PLoS One. 2013 Oct 4;8(10):e75507. doi: 10.1371/journal.pone.0075507. eCollection 2013.
10
Imaging of brain tumors with paramagnetic vesicles targeted to phosphatidylserine.
J Magn Reson Imaging. 2015 Apr;41(4):1079-87. doi: 10.1002/jmri.24654. Epub 2014 May 6.

引用本文的文献

1
Translocator Protein 18 kDa (TSPO): A Promising Molecular Target for Image-Guided Surgery of Solid Cancers.
Adv Pharm Bull. 2024 Mar;14(1):86-104. doi: 10.34172/apb.2024.015. Epub 2023 Oct 14.
2
Real-time glioblastoma tumor microenvironment assessment by SpiderMass for improved patient management.
Cell Rep Med. 2024 Apr 16;5(4):101482. doi: 10.1016/j.xcrm.2024.101482. Epub 2024 Mar 28.
3
Medical Imaging Technology and Imaging Agents.
Adv Exp Med Biol. 2023;1199:15-38. doi: 10.1007/978-981-32-9902-3_2.
4
Phosphatidylserine: The Unique Dual-Role Biomarker for Cancer Imaging and Therapy.
Cancers (Basel). 2022 May 21;14(10):2536. doi: 10.3390/cancers14102536.
8
SapC-DOPS - a Phosphatidylserine-targeted Nanovesicle for selective Cancer therapy.
Cell Commun Signal. 2020 Jan 9;18(1):6. doi: 10.1186/s12964-019-0476-6.
9
Targeting VPAC1 Receptors for Imaging Glioblastoma.
Mol Imaging Biol. 2020 Apr;22(2):293-302. doi: 10.1007/s11307-019-01388-5.
10
Glioblastoma Treatments: An Account of Recent Industrial Developments.
Front Pharmacol. 2018 Sep 13;9:879. doi: 10.3389/fphar.2018.00879. eCollection 2018.

本文引用的文献

1
Imaging and Therapy of Pancreatic Cancer with Phosphatidylserine-Targeted Nanovesicles.
Transl Oncol. 2015 Jun;8(3):196-203. doi: 10.1016/j.tranon.2015.03.011.
3
SapC-DOPS nanovesicles: a novel targeted agent for the imaging and treatment of glioblastoma.
Oncoscience. 2015 Feb 9;2(2):102-110. doi: 10.18632/oncoscience.122. eCollection 2015.
4
SapC-DOPS nanovesicles as targeted therapy for lung cancer.
Mol Cancer Ther. 2015 Feb;14(2):491-8. doi: 10.1158/1535-7163.MCT-14-0661.
5
Cytotoxicity and Selectivity in Skin Cancer by SapC-DOPS Nanovesicles.
J Cancer Ther. 2012 Aug;3(4):321-326. doi: 10.4236/jct.2012.34041.
6
Bispidines for dual imaging.
Chemistry. 2014 Dec 15;20(51):17011-8. doi: 10.1002/chem.201404086. Epub 2014 Oct 24.
7
SapC-DOPS-induced lysosomal cell death synergizes with TMZ in glioblastoma.
Oncotarget. 2014 Oct 30;5(20):9703-9. doi: 10.18632/oncotarget.2232.
8
9
Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy.
Sci Transl Med. 2014 Jun 11;6(240):240ra75. doi: 10.1126/scitranslmed.3007646.
10
Gadolinium Complex of (125)I/(127)I-RGD-DOTA Conjugate as a Tumor-Targeting SPECT/MR Bimodal Imaging Probe.
ACS Med Chem Lett. 2012 Dec 17;4(2):216-9. doi: 10.1021/ml3003499. eCollection 2013 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验