Llorente-Folch Irene, Rueda Carlos B, Pérez-Liébana Irene, Satrústegui Jorgina, Pardo Beatriz
Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28049, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid 28029, Spain, and Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid 28006, Spain.
Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28049, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid 28029, Spain, and Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid 28006, Spain
J Neurosci. 2016 Apr 20;36(16):4443-56. doi: 10.1523/JNEUROSCI.3691-15.2016.
ARALAR/AGC1/Slc25a12, the aspartate-glutamate carrier from brain mitochondria, is the regulatory step in the malate-aspartate NADH shuttle, MAS. MAS is used to oxidize cytosolic NADH in mitochondria, a process required to maintain oxidative glucose utilization. The role of ARALAR was analyzed in two paradigms of glutamate-induced excitotoxicity in cortical neurons: glucose deprivation and acute glutamate stimulation. ARALAR deficiency did not aggravate glutamate-induced neuronal death in vitro, although glutamate-stimulated respiration was impaired. In contrast, the presence of L-lactate as an additional source protected against glutamate-induced neuronal death in control, but not ARALAR-deficient neurons.l-Lactate supplementation increased glutamate-stimulated respiration partially prevented the decrease in the cytosolic ATP/ADP ratio induced by glutamate and substantially diminished mitochondrial accumulation of 8-oxoguanosine, a marker of reactive oxygen species production, only in the presence, but not the absence, of ARALAR. In addition,l-lactate potentiated glutamate-induced increase in cytosolic Ca(2+), in a way independent of the presence of ARALAR. Interestingly,in vivo, the loss of half-a-dose of ARALAR in aralar(+/-)mice enhanced kainic acid-induced seizures and neuronal damage with respect to control animals, in a model of excitotoxicity in which increased L-lactate levels and L-lactate consumption have been previously proven. These results suggest that,in vivo, an inefficient operation of the shuttle in the aralar hemizygous mice prevents the protective role of L-lactate on glutamate excitotoxiciy and that the entry and oxidation of L-lactate through ARALAR-MAS pathway is required for its neuroprotective function.
Lactate now stands as a metabolite necessary for multiple functions in the brain and is an alternative energy source during excitotoxic brain injury. Here we find that the absence of a functional malate-aspartate NADH shuttle caused by aralar/AGC1 disruption causes a block in lactate utilization by neurons, which prevents the protective role of lactate on excitotoxicity, but not glutamate excitotoxicity itself. Thus, failure to use lactate is detrimental and is possibly responsible for the exacerbated in vivo excitotoxicity in aralar(+/-)mice.
ARALAR/AGC1/Slc25a12是脑线粒体中的天冬氨酸-谷氨酸载体,是苹果酸-天冬氨酸NADH穿梭系统(MAS)中的调节步骤。MAS用于在线粒体中氧化胞质NADH,这是维持葡萄糖氧化利用所必需的过程。在皮质神经元谷氨酸诱导的兴奋性毒性的两种模式中分析了ARALAR的作用:葡萄糖剥夺和急性谷氨酸刺激。尽管谷氨酸刺激的呼吸受损,但ARALAR缺乏在体外并未加重谷氨酸诱导的神经元死亡。相反,L-乳酸作为额外的能量来源在对照神经元中可保护其免受谷氨酸诱导的神经元死亡,但在ARALAR缺乏的神经元中则不然。只有在存在ARALAR而不是不存在ARALAR的情况下,补充L-乳酸可部分增加谷氨酸刺激的呼吸,防止谷氨酸诱导的胞质ATP/ADP比值降低,并显著减少作为活性氧产生标志物的8-氧代鸟苷的线粒体积累。此外,L-乳酸以与ARALAR存在与否无关的方式增强谷氨酸诱导的胞质Ca(2+)增加。有趣的是,在体内,在先前已证明L-乳酸水平升高和L-乳酸消耗增加的兴奋性毒性模型中,与对照动物相比,aralar(+/-)小鼠中半剂量ARALAR的缺失增强了海藻酸诱导的癫痫发作和神经元损伤。这些结果表明,在体内,aralar半合子小鼠中穿梭系统的低效运作阻止了L-乳酸对谷氨酸兴奋性毒性的保护作用,并且L-乳酸通过ARALAR-MAS途径的进入和氧化是其神经保护功能所必需的。
乳酸现在是大脑多种功能所必需的代谢物,并且是兴奋性毒性脑损伤期间的替代能量来源。在这里,我们发现由aralar/AGC1破坏导致的功能性苹果酸-天冬氨酸NADH穿梭系统缺失会导致神经元对乳酸的利用受阻,这会阻止乳酸对兴奋性毒性的保护作用,但不会阻止谷氨酸兴奋性毒性本身。因此,无法利用乳酸是有害的,并且可能是aralar(+/-)小鼠体内兴奋性毒性加剧的原因。