Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
Int J Mol Sci. 2022 Jan 4;23(1):528. doi: 10.3390/ijms23010528.
AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and -acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the -KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.
AGC1/Aralar/Slc25a12 是天冬氨酸-谷氨酸的线粒体载体,是 NADH 苹果酸-天冬氨酸穿梭(MAS)的调节成分,可将细胞质氧化还原力转移到神经元线粒体。AGC1/Aralar 的缺乏导致人类罕见疾病,称为“早发性婴儿癫痫性脑病 39 型”(EIEE 39,OMIM #612949),其特征为癫痫、张力减退、运动神经发育停滞、少突胶质细胞髓鞘形成不良和大脑天冬氨酸(Asp)和 -乙酰天冬氨酸(NAA)急剧下降。目前的证据表明,神经元是表达 Aralar 的主要脑细胞类型。然而,矛盾的是,在 AGC1 缺乏症中,胶质细胞的功能,如髓鞘和谷氨酰胺(Gln)合成明显受损。本文中,我们讨论了 AGC1/Aralar-MAS 途径在神经元功能中的作用,如 Asp 和 NAA 合成、乳酸利用、葡萄糖呼吸、谷氨酸(Glu)氧化和其他神经代谢方面。还包括了触发 AGC1 缺乏症中病理生理发现的可能机制,如人类和小鼠中观察到的癫痫和产后少突胶质细胞形成不良。这些机制中的许多机制源自- KO 小鼠模型的发现,该模型广泛再现了人类疾病,包括星形胶质细胞无法合成 Gln 和黑质纹状体系统中多巴胺(DA)处理不当。癫痫和 DA 处理不当是由于 AGC1/Aralar 缺乏导致神经元代谢缺陷的直接后果。然而,髓鞘和 Gln 合成的缺陷可能是神经元受累的结果,或者是 AGC1/Aralar 缺乏对胶质细胞的直接影响。需要进一步研究来阐明这个问题,并描绘控制大脑功能的细胞间代谢通量。最后,我们讨论了在 AGC1 缺乏症患者和小鼠中成功使用的治疗方法。