Robertson David S, Prevost A Toby, Bowden Jack
MRC Biostatistics Unit, Cambridge, U.K.
Imperial College London, London, U.K.
Stat Med. 2016 Sep 30;35(22):3907-22. doi: 10.1002/sim.6974. Epub 2016 Apr 21.
Seamless phase II/III clinical trials offer an efficient way to select an experimental treatment and perform confirmatory analysis within a single trial. However, combining the data from both stages in the final analysis can induce bias into the estimates of treatment effects. Methods for bias adjustment developed thus far have made restrictive assumptions about the design and selection rules followed. In order to address these shortcomings, we apply recent methodological advances to derive the uniformly minimum variance conditionally unbiased estimator for two-stage seamless phase II/III trials. Our framework allows for the precision of the treatment arm estimates to take arbitrary values, can be utilised for all treatments that are taken forward to phase III and is applicable when the decision to select or drop treatment arms is driven by a multiplicity-adjusted hypothesis testing procedure. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
无缝衔接的II/III期临床试验提供了一种有效的方法,可在单一试验中选择一种实验性治疗方法并进行确证性分析。然而,在最终分析中合并两个阶段的数据可能会导致治疗效果估计产生偏差。迄今为止开发的偏差调整方法对所遵循的设计和选择规则做出了限制性假设。为了解决这些缺点,我们应用了最近的方法进展,以推导出两阶段无缝II/III期试验的一致最小方差条件无偏估计量。我们的框架允许治疗组估计的精度取任意值,可用于推进到III期的所有治疗方法,并且当选择或放弃治疗组的决定由多重性调整的假设检验程序驱动时适用。© 2016作者。《医学统计学》由John Wiley & Sons Ltd出版。