Suppr超能文献

相似文献

2
Finite element modeling of energy absorbance in normal and disordered human ears.
Hear Res. 2013 Jul;301:146-55. doi: 10.1016/j.heares.2012.12.005. Epub 2012 Dec 27.
3
Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.
Comput Methods Biomech Biomed Engin. 2014 Aug;17(10):1096-107. doi: 10.1080/10255842.2012.737458. Epub 2012 Nov 22.
4
Multifield coupled finite element analysis for sound transmission in otitis media with effusion.
J Acoust Soc Am. 2007 Dec;122(6):3527-38. doi: 10.1121/1.2793699.
5
Modeling of sound transmission from ear canal to cochlea.
Ann Biomed Eng. 2007 Dec;35(12):2180-95. doi: 10.1007/s10439-007-9366-y. Epub 2007 Sep 18.
6
A comprehensive model of human ear for analysis of implantable hearing devices.
IEEE Trans Biomed Eng. 2011 Oct;58(10):3024-7. doi: 10.1109/TBME.2011.2159714. Epub 2011 Jun 23.
7
Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties.
Proc Inst Mech Eng H. 2016 Aug;230(8):784-94. doi: 10.1177/0954411916652923. Epub 2016 Jun 7.
8
Computer-integrated finite element modeling of human middle ear.
Biomech Model Mechanobiol. 2002 Oct;1(2):109-22. doi: 10.1007/s10237-002-0014-z.
9
Three-dimensional finite element modeling of human ear for sound transmission.
Ann Biomed Eng. 2004 Jun;32(6):847-59. doi: 10.1023/b:abme.0000030260.22737.53.
10
Effects of model definitions and parameter values in finite element modeling of human middle ear mechanics.
Hear Res. 2017 Feb;344:195-206. doi: 10.1016/j.heares.2016.11.011. Epub 2016 Dec 1.

引用本文的文献

2
[Numerical study on the effect of middle ear malformations on energy absorbance].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Feb 25;38(1):89-96. doi: 10.7507/1001-5515.202002051.
3
Mechanical Properties of Baboon Tympanic Membrane from Young to Adult.
J Assoc Res Otolaryngol. 2020 Oct;21(5):395-407. doi: 10.1007/s10162-020-00765-0. Epub 2020 Aug 11.
4
Measurement of Wideband Absorbance as a Test for Otosclerosis.
J Clin Med. 2020 Jun 18;9(6):1908. doi: 10.3390/jcm9061908.
5
Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns.
Trends Hear. 2019 Jan-Dec;23:2331216519889226. doi: 10.1177/2331216519889226.
6
7
Maturation of middle ear transmission in children.
Hear Res. 2017 Feb;344:62-67. doi: 10.1016/j.heares.2016.10.029. Epub 2016 Nov 3.

本文引用的文献

1
Pediatric applications of wideband acoustic immittance measures.
Ear Hear. 2013 Jul;34 Suppl 1:36S-42S. doi: 10.1097/AUD.0b013e31829d5158.
2
A wave finite element analysis of the passive cochlea.
J Acoust Soc Am. 2013 Mar;133(3):1535-45. doi: 10.1121/1.4790350.
3
Finite element modeling of energy absorbance in normal and disordered human ears.
Hear Res. 2013 Jul;301:146-55. doi: 10.1016/j.heares.2012.12.005. Epub 2012 Dec 27.
4
Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.
Comput Methods Biomech Biomed Engin. 2014 Aug;17(10):1096-107. doi: 10.1080/10255842.2012.737458. Epub 2012 Nov 22.
5
Wideband aural acoustic absorbance predicts conductive hearing loss in children.
Int J Audiol. 2012 Dec;51(12):880-91. doi: 10.3109/14992027.2012.721936. Epub 2012 Oct 16.
6
Wideband acoustic transfer functions predict middle-ear effusion.
Laryngoscope. 2012 Apr;122(4):887-94. doi: 10.1002/lary.23182. Epub 2012 Feb 28.
7
Ear-canal reflectance, umbo velocity, and tympanometry in normal-hearing adults.
Ear Hear. 2012 Jan-Feb;33(1):19-34. doi: 10.1097/AUD.0b013e31822ccb76.
8
A comprehensive model of human ear for analysis of implantable hearing devices.
IEEE Trans Biomed Eng. 2011 Oct;58(10):3024-7. doi: 10.1109/TBME.2011.2159714. Epub 2011 Jun 23.
9
Current management of pediatric acute otitis media.
Expert Rev Anti Infect Ther. 2010 Feb;8(2):151-61. doi: 10.1586/eri.09.112.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验