Pashaei Shabnam, Badamchizadeh Mohammadali
Faculty of Electrical and Computer Engineering University of Tabriz, Tabriz, Iran.
ISA Trans. 2016 Jul;63:39-48. doi: 10.1016/j.isatra.2016.04.003. Epub 2016 Apr 22.
This paper investigates the stabilization and disturbance rejection for a class of fractional-order nonlinear dynamical systems with mismatched disturbances. To fulfill this purpose a new fractional-order sliding mode control (FOSMC) based on a nonlinear disturbance observer is proposed. In order to design the suitable fractional-order sliding mode controller, a proper switching surface is introduced. Afterward, by using the sliding mode theory and Lyapunov stability theory, a robust fractional-order control law via a nonlinear disturbance observer is proposed to assure the existence of the sliding motion in finite time. The proposed fractional-order sliding mode controller exposes better control performance, ensures fast and robust stability of the closed-loop system, eliminates the disturbances and diminishes the chattering problem. Finally, the effectiveness of the proposed fractional-order controller is depicted via numerical simulation results of practical example and is compared with some other controllers.
本文研究了一类具有不匹配干扰的分数阶非线性动力系统的镇定和干扰抑制问题。为实现这一目的,提出了一种基于非线性干扰观测器的新型分数阶滑模控制(FOSMC)。为了设计合适的分数阶滑模控制器,引入了一个适当的切换面。随后,利用滑模理论和李雅普诺夫稳定性理论,提出了一种通过非线性干扰观测器的鲁棒分数阶控制律,以确保在有限时间内存在滑模运动。所提出的分数阶滑模控制器具有更好的控制性能,确保了闭环系统的快速和鲁棒稳定性,消除了干扰并减少了抖振问题。最后,通过实际例子的数值模拟结果描述了所提出的分数阶控制器的有效性,并与其他一些控制器进行了比较。