Suppr超能文献

纳米填充聚合物中的网络动力学。

Network dynamics in nanofilled polymers.

机构信息

Foundation for Research and Technology - Hellas (FORTH), Institute of Electronic Structure and Laser, Heraklion, Crete 70013, Greece.

Department of Materials Science and Technology, University of Crete, Heraklion, Crete 71003, Greece.

出版信息

Nat Commun. 2016 Apr 25;7:11368. doi: 10.1038/ncomms11368.

Abstract

It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams-Landel-Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ∼31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which 'tie' NPs together into a network.

摘要

人们普遍认为,在聚合物熔体中添加纳米粒子 (NPs) 可以显著改善其性能。在这里,我们关注机械增强的原因,并展示了有利相互作用的球形二氧化硅 NPs 和聚(2-乙烯基吡啶)混合物的流变学测量结果,同时还辅以几种动态和结构探针。尽管系统动力学具有类似于聚合物的性质,即在低二氧化硅负载下摩擦力增加,但当 NPs 之间的平均面对面分离小于缠结管直径时,它们会变成网状。然后会出现具有威廉姆斯-兰德尔-费里温度依赖性的凝胶状动力学。当二氧化硅负载增加到约 31%体积时,即当 NP 面之间的平均最近距离变得与聚合物的 Kuhn 长度相当时,这种依赖性会变成粒子主导的,即类似于阿仑尼乌斯的。我们的结果表明,纳米复合材料的流动性能很复杂,可以通过改变填充剂的负载来进行调节,也就是说,可以调节聚合物桥将 NPs 连接成网络的性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccb3/4848491/f5d221a29dfd/ncomms11368-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验