Yavitt Benjamin M, Salatto Daniel, Zhou Yuxing, Huang Zhixing, Endoh Maya, Wiegart Lutz, Bocharova Vera, Ribbe Alexander E, Sokolov Alexei P, Schweizer Kenneth S, Koga Tadanori
Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States.
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States.
ACS Nano. 2021 Jul 27;15(7):11501-11513. doi: 10.1021/acsnano.1c01283. Epub 2021 Jun 15.
The addition of nanoparticles (NPs) to polymers is a powerful method to improve the mechanical and other properties of macromolecular materials. Such hybrid polymer-particle systems are also rich in fundamental soft matter physics. Among several factors contributing to mechanical reinforcement, a polymer-mediated NP network is considered to be the most important in polymer nanocomposites (PNCs). Here, we present an integrated experimental-theoretical study of the collective NP dynamics in model PNCs using X-ray photon correlation spectroscopy and microscopic statistical mechanics theory. Silica NPs dispersed in unentangled or entangled poly(2-vinylpyridine) matrices over a range of NP loadings are used. Static collective structure factors of the NP subsystems at temperatures above the bulk glass transition temperature reveal the formation of a network-like microstructure polymer-mediated bridges at high NP loadings above the percolation threshold. The NP collective relaxation times are up to 3 orders of magnitude longer than the self-diffusion limit of isolated NPs and display a rich dependence with observation wavevector and NP loading. A mode-coupling theory dynamical analysis that incorporates the static polymer-mediated bridging structure and collective motions of NPs is performed. It captures well both the observed scattering wavevector and NP loading dependences of the collective NP dynamics in the unentangled polymer matrix, with modest quantitative deviations emerging for the entangled PNC samples. Additionally, we identify an unusual and weak temperature dependence of collective NP dynamics, in qualitative contrast with the mechanical response. Hence, the present study has revealed key aspects of the collective motions of NPs connected by polymer bridges in contact with a viscous adsorbing polymer medium and identifies some outstanding remaining challenges for the theoretical understanding of these complex soft materials.
在聚合物中添加纳米粒子(NPs)是改善高分子材料力学性能和其他性能的有效方法。这种聚合物-粒子杂化体系也蕴含着丰富的基础软物质物理学知识。在有助于机械增强的诸多因素中,聚合物介导的NP网络被认为是聚合物纳米复合材料(PNCs)中最重要的因素。在此,我们利用X射线光子相关光谱和微观统计力学理论,对模型PNCs中NP的集体动力学进行了综合实验-理论研究。使用了在一系列NP负载量下分散于未缠结或缠结的聚(2-乙烯基吡啶)基质中的二氧化硅NP。在高于本体玻璃化转变温度的温度下,NP子系统的静态集体结构因子揭示了在高于渗流阈值的高NP负载量下形成了类似网络的微观结构——聚合物介导的桥。NP的集体弛豫时间比孤立NP的自扩散极限长3个数量级,并表现出对观测波矢和NP负载量的丰富依赖性。进行了模式耦合理论动力学分析,该分析纳入了静态聚合物介导的桥接结构和NP的集体运动。它很好地捕捉了未缠结聚合物基质中集体NP动力学的观测散射波矢和NP负载量依赖性,对于缠结的PNC样品出现了适度的定量偏差。此外,我们发现集体NP动力学对温度的依赖性不寻常且较弱,这与力学响应形成定性对比。因此,本研究揭示了与粘性吸附聚合物介质接触的由聚合物桥连接的NP集体运动的关键方面,并确定了对这些复杂软材料进行理论理解时一些突出的剩余挑战。