Mavor David, Barlow Kyle, Thompson Samuel, Barad Benjamin A, Bonny Alain R, Cario Clinton L, Gaskins Garrett, Liu Zairan, Deming Laura, Axen Seth D, Caceres Elena, Chen Weilin, Cuesta Adolfo, Gate Rachel E, Green Evan M, Hulce Kaitlin R, Ji Weiyue, Kenner Lillian R, Mensa Bruk, Morinishi Leanna S, Moss Steven M, Mravic Marco, Muir Ryan K, Niekamp Stefan, Nnadi Chimno I, Palovcak Eugene, Poss Erin M, Ross Tyler D, Salcedo Eugenia C, See Stephanie K, Subramaniam Meena, Wong Allison W, Li Jennifer, Thorn Kurt S, Conchúir Shane Ó, Roscoe Benjamin P, Chow Eric D, DeRisi Joseph L, Kortemme Tanja, Bolon Daniel N, Fraser James S
Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States.
Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States.
Elife. 2016 Apr 25;5:e15802. doi: 10.7554/eLife.15802.
Ubiquitin is essential for eukaryotic life and varies in only 3 amino acid positions between yeast and humans. However, recent deep sequencing studies indicate that ubiquitin is highly tolerant to single mutations. We hypothesized that this tolerance would be reduced by chemically induced physiologic perturbations. To test this hypothesis, a class of first year UCSF graduate students employed deep mutational scanning to determine the fitness landscape of all possible single residue mutations in the presence of five different small molecule perturbations. These perturbations uncover 'shared sensitized positions' localized to areas around the hydrophobic patch and the C-terminus. In addition, we identified perturbation specific effects such as a sensitization of His68 in HU and a tolerance to mutation at Lys63 in DTT. Our data show how chemical stresses can reduce buffering effects in the ubiquitin proteasome system. Finally, this study demonstrates the potential of lab-based interdisciplinary graduate curriculum.
泛素对于真核生物的生命活动至关重要,酵母和人类的泛素仅在3个氨基酸位置上有所不同。然而,最近的深度测序研究表明,泛素对单基因突变具有高度耐受性。我们推测,化学诱导的生理扰动会降低这种耐受性。为了验证这一假设,一类加州大学旧金山分校的一年级研究生采用深度突变扫描来确定在五种不同小分子扰动存在下所有可能的单残基突变的适应性景观。这些扰动揭示了位于疏水补丁和C末端周围区域的“共享敏感位置”。此外,我们还确定了特定于扰动的效应,例如在HU中His68的敏感性以及在DTT中Lys63对突变的耐受性。我们的数据展示了化学应激如何降低泛素蛋白酶体系统中的缓冲效应。最后,这项研究展示了基于实验室的跨学科研究生课程的潜力。