Suppr超能文献

根内皮层和外皮层对非生物胁迫的不对称发育。

Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses.

作者信息

Líška Denis, Martinka Michal, Kohanová Jana, Lux Alexander

机构信息

Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15 Bratislava, Slovak Republic.

Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 23, Slovak Republic.

出版信息

Ann Bot. 2016 Oct 1;118(4):667-674. doi: 10.1093/aob/mcw047.

Abstract

Background and Aims In the present study, we show that development of endodermis and exodermis is sensitively regulated by water accessibility. As cadmium (Cd) is known to induce xeromorphic effects in plants, maize roots were exposed also to Cd to understand the developmental process of suberin lamella deposition in response to a local Cd source. Methods In a first experiment, maize roots were cultivated in vitro and unilaterally exposed to water-containing medium from one side and to air from the other. In a second experiment, the roots were placed between two agar medium layers with a strip of Cd-containing medium attached locally and unilaterally to the root surface. Key Results The development of suberin lamella (the second stage of exodermal and endodermal development) started asymmetrically, preferentially closer to the root tip on the side exposed to the air. In the root contact with Cd in a spatially limited area exposed to one side of the root, suberin lamella was preferentially developed in the contact region and additionally along the whole length of the root basipetally from the contact area. However, the development was unilateral and asymmetrical, facing the treated side. The same pattern occurred irrespective of the distance of Cd application from the root apex. Conclusions These developmental characteristics indicate a sensitive response of root endodermis and exodermis in the protection of vascular tissues against abiotic stresses.

摘要

背景与目的 在本研究中,我们表明内皮层和外皮层的发育受到水分可利用性的敏感调控。由于已知镉(Cd)会在植物中诱导旱生形态效应,因此还对玉米根进行镉处理,以了解其对局部镉源响应时木栓质片层沉积的发育过程。方法 在第一个实验中,将玉米根在体外培养,一侧单侧暴露于含水培养基,另一侧暴露于空气中。在第二个实验中,将根置于两层琼脂培养基之间,在根表面局部单侧附着一条含镉培养基条带。主要结果 木栓质片层(外皮层和内皮层发育的第二阶段)的发育不对称开始,优先在暴露于空气一侧更靠近根尖的位置。在根的一侧在空间有限区域与镉接触时,木栓质片层优先在接触区域发育,并从接触区域沿根的全长向基部额外发育。然而,发育是单侧且不对称的,朝向处理侧。无论镉施用于距根尖的距离如何,都会出现相同的模式。结论 这些发育特征表明根内皮层和外皮层在保护维管组织免受非生物胁迫方面具有敏感响应。

相似文献

1
Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses.
Ann Bot. 2016 Oct 1;118(4):667-674. doi: 10.1093/aob/mcw047.
3
Development, dilation and subdivision of cortical layers of gentian (Gentiana asclepiadea) root.
New Phytol. 2003 Oct;160(1):135-143. doi: 10.1046/j.1469-8137.2003.00863.x.
4
Nitratedependent suberization regulates cadmium uptake and accumulation in maize.
Sci Total Environ. 2023 Jun 20;878:162848. doi: 10.1016/j.scitotenv.2023.162848. Epub 2023 Mar 15.
5
Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots.
Ann Bot. 2009 Mar;103(5):687-702. doi: 10.1093/aob/mcn255. Epub 2009 Jan 16.
8
Effect and localization of phenanthrene in maize roots.
Chemosphere. 2016 Apr;149:130-6. doi: 10.1016/j.chemosphere.2016.01.102. Epub 2016 Feb 5.
9
Radial hydraulic conductivity along developing onion roots.
J Exp Bot. 2000 Mar;51(344):547-57. doi: 10.1093/jexbot/51.344.547.
10
A suberized exodermis is required for tomato drought tolerance.
Nat Plants. 2024 Jan;10(1):118-130. doi: 10.1038/s41477-023-01567-x. Epub 2024 Jan 2.

引用本文的文献

1
An atlas of Brachypodium distachyon lateral root development.
Biol Open. 2024 Sep 15;13(9). doi: 10.1242/bio.060531. Epub 2024 Sep 2.
4
Dark septate endophyte promotes maize growth and alleviates cadmium toxicity.
Front Microbiol. 2023 Apr 11;14:1165131. doi: 10.3389/fmicb.2023.1165131. eCollection 2023.
5
Plant root suberin: A layer of defence against biotic and abiotic stresses.
Front Plant Sci. 2022 Nov 25;13:1056008. doi: 10.3389/fpls.2022.1056008. eCollection 2022.
6
The Combined Effect of Heat and Osmotic Stress on Suberization of Roots.
Cells. 2022 Jul 29;11(15):2341. doi: 10.3390/cells11152341.
7
With a little help from MYB friends: Transcriptional network controlling root suberization and lignification.
Plant Physiol. 2022 Sep 28;190(2):1077-1079. doi: 10.1093/plphys/kiac318.
9
Physiological roles of Casparian strips and suberin in the transport of water and solutes.
New Phytol. 2021 Dec;232(6):2295-2307. doi: 10.1111/nph.17765. Epub 2021 Oct 21.
10
Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transcription factors.
Proc Natl Acad Sci U S A. 2021 Sep 28;118(39). doi: 10.1073/pnas.2101730118.

本文引用的文献

1
Coping with drought: stress and adaptive responses in potato and perspectives for improvement.
Front Plant Sci. 2015 Jul 22;6:542. doi: 10.3389/fpls.2015.00542. eCollection 2015.
2
Cadmium translocation by contractile roots differs from that in regular, non-contractile roots.
Ann Bot. 2015 Jun;115(7):1149-54. doi: 10.1093/aob/mcv051. Epub 2015 May 4.
3
Drought-resistant cereals: impact on water sustainability and nutritional quality.
Proc Nutr Soc. 2015 Aug;74(3):191-7. doi: 10.1017/S0029665115000026. Epub 2015 Feb 23.
6
Response of plants to water stress.
Front Plant Sci. 2014 Mar 13;5:86. doi: 10.3389/fpls.2014.00086. eCollection 2014.
7
Drought stress responses in crops.
Funct Integr Genomics. 2014 Mar;14(1):11-22. doi: 10.1007/s10142-013-0356-x. Epub 2014 Jan 10.
10
Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants.
Ann Bot. 2012 Jul;110(2):433-43. doi: 10.1093/aob/mcs039. Epub 2012 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验