Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Republic of Korea.
Fuel Cell Research Center, Korea Institute of Science and Technology (KIST) , Seoul 136-791, Korea.
ACS Appl Mater Interfaces. 2016 May 11;8(18):11459-65. doi: 10.1021/acsami.6b01555. Epub 2016 Apr 27.
The capability of fabricating multiscale structures with desired morphology and incorporating them into engineering applications is key to realizing technological breakthroughs by employing the benefits from both microscale and nanoscale morphology simultaneously. Here, we developed a facile patterning method to fabricate multiscale hierarchical structures by a novel approach called creep-assisted sequential imprinting. In this work, nanopatterning was first carried out by thermal imprint lithography above the glass transition temperature (Tg) of a polymer film, and then followed by creep-assisted imprinting with micropatterns based on the mechanical deformation of the polymer film under the relatively long-term exposure to mechanical stress at temperatures below the Tg of the polymer. The fabricated multiscale arrays exhibited excellent pattern uniformity over large areas. To demonstrate the usage of multiscale architectures, we incorporated the multiscale Nafion films into polymer electrolyte membrane fuel cell, and this device showed more than 10% higher performance than the conventional one. The enhancement was attributed to the decrease in mass transport resistance because of unique cone-shape morphology by creep-recovery effects and the increase in interfacial surface area between Nafion film and electrocatalyst layer.
制造具有所需形态的多尺度结构的能力,并将其纳入工程应用中,是通过同时利用微尺度和纳米尺度形态的优势实现技术突破的关键。在这里,我们开发了一种简便的图案化方法,通过一种称为蠕变辅助顺序压印的新方法来制造多尺度分层结构。在这项工作中,首先在聚合物薄膜的玻璃化转变温度 (Tg) 以上通过热压印光刻进行纳米图案化,然后在聚合物的 Tg 以下温度下通过机械应力的相对长时间暴露,基于聚合物薄膜的机械变形进行蠕变辅助压印,形成具有微图案的结构。所制造的多尺度阵列在大面积上表现出优异的图案均匀性。为了展示多尺度结构的用途,我们将多尺度 Nafion 薄膜纳入聚合物电解质膜燃料电池中,该装置的性能比传统装置高出 10%以上。这种增强归因于由于蠕变恢复效应的独特锥形形态和 Nafion 薄膜与电催化剂层之间的界面表面积增加而导致的质量传输阻力降低。