Suppr超能文献

网络上进化量子囚徒困境博弈的动力学、形态发生与收敛

Dynamics, morphogenesis and convergence of evolutionary quantum Prisoner's Dilemma games on networks.

作者信息

Li Angsheng, Yong Xi

机构信息

State Key Laboratory of Computer Science , Institute of Software, Chinese Academy of Sciences , Beijing 100190, People's Republic of China.

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; School of Computer Science, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

出版信息

Proc Math Phys Eng Sci. 2016 Feb;472(2186):20150280. doi: 10.1098/rspa.2015.0280.

Abstract

The authors proposed a quantum Prisoner's Dilemma (PD) game as a natural extension of the classic PD game to resolve the dilemma. Here, we establish a new Nash equilibrium principle of the game, propose the notion of convergence and discover the convergence and phase-transition phenomena of the evolutionary games on networks. We investigate the many-body extension of the game or evolutionary games in networks. For homogeneous networks, we show that entanglement guarantees a quick convergence of super cooperation, that there is a phase transition from the convergence of defection to the convergence of super cooperation, and that the threshold for the phase transitions is principally determined by the Nash equilibrium principle of the game, with an accompanying perturbation by the variations of structures of networks. For heterogeneous networks, we show that the equilibrium frequencies of super-cooperators are divergent, that entanglement guarantees emergence of super-cooperation and that there is a phase transition of the emergence with the threshold determined by the Nash equilibrium principle, accompanied by a perturbation by the variations of structures of networks. Our results explore systematically, for the first time, the dynamics, morphogenesis and convergence of evolutionary games in interacting and competing systems.

摘要

作者提出了一种量子囚徒困境(PD)博弈,作为经典PD博弈的自然扩展以解决该困境。在此,我们建立了该博弈的新纳什均衡原理,提出了收敛的概念,并发现了网络上进化博弈的收敛和相变现象。我们研究了该博弈或网络中进化博弈的多体扩展。对于均匀网络,我们表明纠缠保证了超级合作的快速收敛,存在从背叛收敛到超级合作收敛的相变,并且相变的阈值主要由博弈的纳什均衡原理决定,同时伴随着网络结构变化的扰动。对于非均匀网络,我们表明超级合作者的均衡频率是发散的,纠缠保证了超级合作的出现,并且存在出现的相变,其阈值由纳什均衡原理决定,同时伴随着网络结构变化的扰动。我们的结果首次系统地探索了相互作用和竞争系统中进化博弈的动力学、形态发生和收敛。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dca9/4841647/b3ab1bb3c47f/rspa20150280-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验