Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan.
Nanoscale. 2016 Jun 7;8(21):10956-62. doi: 10.1039/c6nr01747a. Epub 2016 Apr 28.
We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion.
我们报告了一种新颖且简便的自限制合成方法,用于制备基于硅纳米晶(Si NC)的胶体稳定半导体-金属(金、银和铂)杂化纳米颗粒(NPs)。对于杂化 NPs 的形成,我们采用了具有重掺杂硼(B)和磷(P)壳的无配体胶体 Si NC。通过简单地将 B 和 P 共掺杂胶体 Si NC 与金属盐混合,可自发形成由金属核和 Si NC 壳组成的杂化 NPs。我们演示了高度均匀和尺寸可控的杂化 NPs 的合成。结果表明,共掺杂 Si NC 不仅可作为金属盐的还原剂,还可作为阻止金属 NP 生长的保护层,从而使反应过程具有自限制特性。这一过程具有自限制特性。开发各种基于 Si NC 的杂化 NPs 是设计具有生物相容性的多功能 NPs 的重要一步,这些 NPs 具有广泛的材料选择,可用于生物传感、生物成像和太阳能转换等领域。