Dief Essam M, Darwish Nadim
School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
Chem Sci. 2023 Feb 17;14(13):3428-3440. doi: 10.1039/d2sc06492h. eCollection 2023 Mar 29.
Developing means to characterise SARS-CoV-2 and its new variants is critical for future outbreaks. SARS-CoV-2 spike proteins have peripheral disulfide bonds (S-S), which are common in all spike proteins of SARS-CoV-2 variants, in other types of coronaviruses (, SARS-CoV and MERS-CoV) and are likely to be present in future coronaviruses. Here, we demonstrate that S-S bonds in the spike S1 protein of SARS-CoV-2 react with gold (Au) and silicon (Si) electrodes. Bonding to Si is induced by a spontaneous electrochemical reaction that involves oxidation of Si-H and the reduction of the S-S bonds. The reaction of the spike protein with Au enabled single-molecule protein circuits, by connecting the spike S1 protein between two Au nano-electrodes using the scanning tunnelling microscopy-break junction (STM-BJ) technique. The conductance of a single spike S1 protein was surprisingly high and ranged between two states of 3 × 10 and 4 × 10 (1 = 77.5 μS). The two conductance states are governed by the S-S bonds reaction with Au which controls the orientation of the protein in the circuit, and which different electron pathways are created. The 3 × 10 level is attributed to a single SARS-CoV-2 protein connecting to the two STM Au nano-electrodes from the receptor binding domain (RBD) subunit and the S1/S2 cleavage site. A lower 4 × 10 conductance is attributed to the spike protein connecting to the STM electrodes from the RBD subunit and the N-terminal domain (NTD). These conductance signals are only observed at electric fields equal to or lower than 7.5 × 10 V m. At an electric field of 1.5 × 10 V m, the original conductance magnitude decreases accompanied by a lower junction yield, suggesting a change in the structure of the spike protein in the electrified junction. Above an electric field of 3 × 10 V m, the conducting channels are blocked and this is attributed to the spike protein denaturing in the nano-gap. These findings open new venues for developing coronavirus-capturing materials and offer an electrical method for analysing, detecting and potentially electrically deactivating coronaviruses and their future variants.
开发表征严重急性呼吸综合征冠状病毒2(SARS-CoV-2)及其新变种的方法对于应对未来疫情至关重要。SARS-CoV-2刺突蛋白具有外周二硫键(S-S),在SARS-CoV-2变种的所有刺突蛋白中都很常见,在其他类型的冠状病毒(如SARS-CoV和中东呼吸综合征冠状病毒MERS-CoV)中也存在,并且很可能在未来的冠状病毒中出现。在此,我们证明SARS-CoV-2刺突S1蛋白中的S-S键可与金(Au)电极和硅(Si)电极发生反应。与Si的键合是由自发的电化学反应诱导的,该反应涉及Si-H的氧化和S-S键的还原。通过使用扫描隧道显微镜-断接(STM-BJ)技术将刺突S1蛋白连接在两个金纳米电极之间,刺突蛋白与Au的反应实现了单分子蛋白电路。单个刺突S1蛋白的电导出奇地高,介于3×10和4×10两个状态之间(1 = 77.5 μS)。这两个电导状态由S-S键与Au的反应控制,该反应控制了蛋白在电路中的取向,并产生了不同的电子通路。3×10的水平归因于单个SARS-CoV-2蛋白从受体结合域(RBD)亚基和S1/S2裂解位点连接到两个STM金纳米电极。较低的4×10电导归因于刺突蛋白从RBD亚基和N端结构域(NTD)连接到STM电极。这些电导信号仅在等于或低于7.5×10 V m的电场下观察到。在1.5×10 V m的电场下,原始电导幅度降低,同时结产率降低,这表明带电结中刺突蛋白的结构发生了变化。在高于3×10 V m的电场下,导电通道被阻断,这归因于纳米间隙中刺突蛋白的变性。这些发现为开发冠状病毒捕获材料开辟了新途径,并提供了一种用于分析、检测以及可能使冠状病毒及其未来变种失活的电学方法。