Suppr超能文献

具有卓越分解代谢能力的慢生根瘤菌的集合种群优势与基因组岛获得

Metapopulation dominance and genomic-island acquisition of Bradyrhizobium with superior catabolic capabilities.

作者信息

Hollowell Amanda C, Regus John U, Turissini David, Gano-Cohen Kelsey A, Bantay Roxanne, Bernardo Andrew, Moore Devora, Pham Jonathan, Sachs Joel L

机构信息

Department of Biology, University of California, Riverside, CA 92521, USA.

Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Proc Biol Sci. 2016 Apr 27;283(1829). doi: 10.1098/rspb.2016.0496.

Abstract

Root nodule-forming rhizobia exhibit a bipartite lifestyle, replicating in soil and also within plant cells where they fix nitrogen for legume hosts. Host control models posit that legume hosts act as a predominant selective force on rhizobia, but few studies have examined rhizobial fitness in natural populations. Here, we genotyped and phenotyped Bradyrhizobium isolates across more than 800 km of the native Acmispon strigosus host range. We sequenced chromosomal genes expressed under free-living conditions and accessory symbiosis loci expressed in planta and encoded on an integrated 'symbiosis island' (SI). We uncovered a massive clonal expansion restricted to the Bradyrhizobium chromosome, with a single chromosomal haplotype dominating populations, ranging more than 700 km, and acquiring 42 divergent SI haplotypes, none of which were spatially widespread. For focal genotypes, we quantified utilization of 190 sole-carbon sources relevant to soil fitness. Chromosomal haplotypes that were both widespread and dominant exhibited superior growth on diverse carbon sources, whereas these patterns were not mirrored among SI haplotypes. Abundance, spatial range and catabolic superiority of chromosomal, but not symbiosis genotypes suggests that fitness in the soil environment, rather than symbiosis with hosts, might be the key driver of Bradyrhizobium dominance.

摘要

形成根瘤的根瘤菌具有双重生活方式,在土壤中以及在植物细胞内进行繁殖,在植物细胞内它们为豆科宿主固定氮。宿主控制模型认为,豆科宿主是根瘤菌的主要选择力量,但很少有研究考察自然种群中根瘤菌的适应性。在这里,我们对横跨超过800公里的原生宿主海滨刺芹范围内的慢生根瘤菌分离株进行了基因分型和表型分析。我们对在自由生活条件下表达的染色体基因以及在植物中表达并编码在一个整合的“共生岛”(SI)上的辅助共生位点进行了测序。我们发现了一个仅限于慢生根瘤菌染色体的大规模克隆扩张,单一的染色体单倍型主导着种群,范围超过700公里,并获得了42种不同的SI单倍型,其中没有一种在空间上广泛分布。对于重点基因型,我们量化了与土壤适应性相关的190种单一碳源的利用情况。广泛且占主导地位的染色体单倍型在多种碳源上表现出更好的生长,而这些模式在SI单倍型中并未体现。染色体基因型而非共生基因型的丰度、空间范围和分解代谢优势表明,土壤环境中的适应性而非与宿主的共生关系可能是慢生根瘤菌占主导地位的关键驱动因素。

相似文献

2
Epidemic Spread of Symbiotic and Non-Symbiotic Bradyrhizobium Genotypes Across California.
Microb Ecol. 2016 Apr;71(3):700-10. doi: 10.1007/s00248-015-0685-5. Epub 2015 Oct 14.
3
Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism.
Appl Environ Microbiol. 2016 Aug 15;82(17):5259-68. doi: 10.1128/AEM.01116-16. Print 2016 Sep 1.
7
Interspecific conflict and the evolution of ineffective rhizobia.
Ecol Lett. 2019 Jun;22(6):914-924. doi: 10.1111/ele.13247. Epub 2019 Mar 18.
8
Diversifying selection by Desmodiinae legume species on Bradyrhizobium symbionts.
FEMS Microbiol Ecol. 2015 Jul;91(7). doi: 10.1093/femsec/fiv075. Epub 2015 Jun 29.
9
Recurrent mutualism breakdown events in a legume rhizobia metapopulation.
Proc Biol Sci. 2020 Jan 29;287(1919):20192549. doi: 10.1098/rspb.2019.2549.
10
Hopanoids Confer Robustness to Physicochemical Variability in the Niche of the Plant Symbiont Bradyrhizobium diazoefficiens.
J Bacteriol. 2022 Jul 19;204(7):e0044221. doi: 10.1128/jb.00442-21. Epub 2022 Jun 3.

引用本文的文献

1
Host-Associated Rhizobial Fitness: Dependence on Nitrogen, Density, Community Complexity, and Legume Genotype.
Appl Environ Microbiol. 2022 Aug 9;88(15):e0052622. doi: 10.1128/aem.00526-22. Epub 2022 Jul 19.
2
Pangenome Evolution Reconciles Robustness and Instability of Rhizobial Symbiosis.
mBio. 2022 Jun 28;13(3):e0007422. doi: 10.1128/mbio.00074-22. Epub 2022 Apr 13.
3
Phylogeographic distribution of rhizobia nodulating common bean (Phaseolus vulgaris L.) in Ethiopia.
FEMS Microbiol Ecol. 2021 Apr 1;97(4). doi: 10.1093/femsec/fiab046.
4
Recurrent mutualism breakdown events in a legume rhizobia metapopulation.
Proc Biol Sci. 2020 Jan 29;287(1919):20192549. doi: 10.1098/rspb.2019.2549.
6
Widespread Distribution of Highly Adapted Species Nodulating Diverse Legumes in Africa.
Front Microbiol. 2019 Feb 22;10:310. doi: 10.3389/fmicb.2019.00310. eCollection 2019.
7
Diversity of Bradyrhizobia in Subsahara Africa: A Rich Resource.
Front Microbiol. 2018 Sep 20;9:2194. doi: 10.3389/fmicb.2018.02194. eCollection 2018.
8
Dynamic genomic architecture of mutualistic cooperation in a wild population of Mesorhizobium.
ISME J. 2019 Feb;13(2):301-315. doi: 10.1038/s41396-018-0266-y. Epub 2018 Sep 14.
9
Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae.
Genes (Basel). 2018 Mar 14;9(3):163. doi: 10.3390/genes9030163.
10
Select and resequence reveals relative fitness of bacteria in symbiotic and free-living environments.
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2425-2430. doi: 10.1073/pnas.1714246115. Epub 2018 Feb 16.

本文引用的文献

1
Legume Sanctions and the Evolution of Symbiotic Cooperation by Rhizobia.
Am Nat. 2000 Dec;156(6):567-576. doi: 10.1086/316994.
2
The Nonconcept of Species Diversity: A Critique and Alternative Parameters.
Ecology. 1971 Jul;52(4):577-586. doi: 10.2307/1934145.
3
ESTIMATING F-STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE.
Evolution. 1984 Nov;38(6):1358-1370. doi: 10.1111/j.1558-5646.1984.tb05657.x.
4
Epidemic Spread of Symbiotic and Non-Symbiotic Bradyrhizobium Genotypes Across California.
Microb Ecol. 2016 Apr;71(3):700-10. doi: 10.1007/s00248-015-0685-5. Epub 2015 Oct 14.
5
Engineering Microbiomes to Improve Plant and Animal Health.
Trends Microbiol. 2015 Oct;23(10):606-617. doi: 10.1016/j.tim.2015.07.009. Epub 2015 Sep 25.
6
Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils.
ISME J. 2015 Nov;9(11):2435-41. doi: 10.1038/ismej.2015.54. Epub 2015 Apr 24.
7
Native California soils are selective reservoirs for multidrug-resistant bacteria.
Environ Microbiol Rep. 2015 Jun;7(3):442-9. doi: 10.1111/1758-2229.12269. Epub 2015 Mar 9.
8
The spread of Bradyrhizobium lineages across host legume clades: from Abarema to Zygia.
Microb Ecol. 2015 Apr;69(3):630-40. doi: 10.1007/s00248-014-0503-5. Epub 2014 Oct 10.
9
Complete Genome Sequence of the Soybean Symbiont Bradyrhizobium japonicum Strain USDA6T.
Genes (Basel). 2011 Oct 28;2(4):763-87. doi: 10.3390/genes2040763.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验