Suppr超能文献

豆科根瘤菌复合种群中反复出现的共生关系破裂事件。

Recurrent mutualism breakdown events in a legume rhizobia metapopulation.

机构信息

Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.

Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.

出版信息

Proc Biol Sci. 2020 Jan 29;287(1919):20192549. doi: 10.1098/rspb.2019.2549.

Abstract

Bacterial mutualists generate major fitness benefits for eukaryotes, reshaping the host phenotype and its interactions with the environment. Yet, microbial mutualist populations are predicted to generate mutants that defect from providing costly services to hosts while maintaining the capacity to exploit host resources. Here, we examined the mutualist service of symbiotic nitrogen fixation in a metapopulation of root-nodulating spp that associate with the native legume . We quantified mutualism traits of 85 isolates gathered from a 700 km transect in California spanning 10 sampled populations. We clonally inoculated each isolate onto hosts and quantified nodulation capacity and net effects of infection, including host growth and isotopic nitrogen concentration. Six isolates from five populations were categorized as ineffective because they formed nodules but did not enhance host growth via nitrogen fixation. Six additional isolates from three populations failed to form root nodules. Phylogenetic reconstruction inferred two types of mutualism breakdown, including three to four independent losses of effectiveness and five losses of nodulation capacity on . The evolutionary and genomic drivers of these mutualism breakdown events remain poorly understood.

摘要

细菌共生体为真核生物带来了主要的适应益处,重塑了宿主表型及其与环境的相互作用。然而,微生物共生体种群预计会产生突变体,这些突变体在为宿主提供昂贵服务的同时,还保持着利用宿主资源的能力。在这里,我们研究了与本地豆科植物 共生的根瘤菌属 共生固氮的共生服务在一个复合种群中的表现。我们从加利福尼亚州 700 公里长的横断线上的 10 个采样种群中收集了 85 个 分离株,并对其进行了量化分析。我们将每个 分离株无性繁殖接种到 宿主上,并量化了其结瘤能力和感染的净效应,包括宿主生长和同位素氮浓度。五个种群中的六个 分离株被归类为无效,因为它们形成了根瘤,但没有通过固氮来促进宿主生长。另外六个 分离株来自三个种群,无法形成根瘤。系统发育重建推断出两种共生关系破裂的类型,包括三个到四个独立的有效性丧失和五个在 上的结瘤能力丧失。这些共生关系破裂事件的进化和基因组驱动因素仍知之甚少。

相似文献

1
Recurrent mutualism breakdown events in a legume rhizobia metapopulation.
Proc Biol Sci. 2020 Jan 29;287(1919):20192549. doi: 10.1098/rspb.2019.2549.
2
Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism.
Appl Environ Microbiol. 2016 Aug 15;82(17):5259-68. doi: 10.1128/AEM.01116-16. Print 2016 Sep 1.
3
Interspecific conflict and the evolution of ineffective rhizobia.
Ecol Lett. 2019 Jun;22(6):914-924. doi: 10.1111/ele.13247. Epub 2019 Mar 18.
4
Competitive interference among rhizobia reduces benefits to hosts.
Curr Biol. 2023 Jul 24;33(14):2988-3001.e4. doi: 10.1016/j.cub.2023.06.081.
5
Epidemic Spread of Symbiotic and Non-Symbiotic Bradyrhizobium Genotypes Across California.
Microb Ecol. 2016 Apr;71(3):700-10. doi: 10.1007/s00248-015-0685-5. Epub 2015 Oct 14.
9
The direct effects of plant polyploidy on the legume-rhizobia mutualism.
Ann Bot. 2018 Feb 12;121(2):209-220. doi: 10.1093/aob/mcx121.

引用本文的文献

2
Extracellular symbiont colonizes insect during embryo development.
ISME Commun. 2024 Jan 20;4(1):ycae005. doi: 10.1093/ismeco/ycae005. eCollection 2024 Jan.
3
Above- and belowground fungal biodiversity of Populus trees on a continental scale.
Nat Microbiol. 2023 Dec;8(12):2406-2419. doi: 10.1038/s41564-023-01514-8. Epub 2023 Nov 16.
4
Trait matching in a multi-species geographic mosaic of leafflower plants, brood pollinators, and cheaters.
Ecol Evol. 2023 Jul 4;13(7):e10228. doi: 10.1002/ece3.10228. eCollection 2023 Jul.
5
Pangenome Evolution Reconciles Robustness and Instability of Rhizobial Symbiosis.
mBio. 2022 Jun 28;13(3):e0007422. doi: 10.1128/mbio.00074-22. Epub 2022 Apr 13.
6
Innovation and appropriation in mycorrhizal and rhizobial Symbioses.
Plant Cell. 2022 Apr 26;34(5):1573-1599. doi: 10.1093/plcell/koac039.
7
The evolution of cheating in viruses.
Nat Commun. 2021 Nov 26;12(1):6928. doi: 10.1038/s41467-021-27293-6.
9
Ten recent insights for our understanding of cooperation.
Nat Ecol Evol. 2021 Apr;5(4):419-430. doi: 10.1038/s41559-020-01384-x. Epub 2021 Jan 28.
10
Comparative genomics reveals high rates of horizontal transfer and strong purifying selection on rhizobial symbiosis genes.
Proc Biol Sci. 2021 Jan 13;288(1942):20201804. doi: 10.1098/rspb.2020.1804. Epub 2021 Jan 6.

本文引用的文献

1
Interspecific conflict and the evolution of ineffective rhizobia.
Ecol Lett. 2019 Jun;22(6):914-924. doi: 10.1111/ele.13247. Epub 2019 Mar 18.
2
Dynamic genomic architecture of mutualistic cooperation in a wild population of Mesorhizobium.
ISME J. 2019 Feb;13(2):301-315. doi: 10.1038/s41396-018-0266-y. Epub 2018 Sep 14.
5
Legumes versus rhizobia: a model for ongoing conflict in symbiosis.
New Phytol. 2018 Sep;219(4):1199-1206. doi: 10.1111/nph.15222. Epub 2018 May 30.
6
Legume Sanctions and the Evolution of Symbiotic Cooperation by Rhizobia.
Am Nat. 2000 Dec;156(6):567-576. doi: 10.1086/316994.
7
Fitness variation among host species and the paradox of ineffective rhizobia.
J Evol Biol. 2018 Apr;31(4):599-610. doi: 10.1111/jeb.13249. Epub 2018 Feb 26.
8
Lotus japonicus alters in planta fitness of Mesorhizobium loti dependent on symbiotic nitrogen fixation.
PLoS One. 2017 Sep 28;12(9):e0185568. doi: 10.1371/journal.pone.0185568. eCollection 2017.
9
Mechanisms of symbiont-conferred protection against natural enemies: an ecological and evolutionary framework.
Curr Opin Insect Sci. 2014 Oct;4:8-14. doi: 10.1016/j.cois.2014.08.002. Epub 2014 Aug 19.
10
Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium.
Microbes Environ. 2016 Sep 29;31(3):260-7. doi: 10.1264/jsme2.ME15159. Epub 2016 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验