Benjamini Dan, Komlosh Michal E, Holtzclaw Lynne A, Nevo Uri, Basser Peter J
Quantitative Imaging and Tissue Sciences, NICHD, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel.
Quantitative Imaging and Tissue Sciences, NICHD, National Institutes of Health, Bethesda, MD 20892, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
Neuroimage. 2016 Jul 15;135:333-44. doi: 10.1016/j.neuroimage.2016.04.052. Epub 2016 Apr 26.
We report the development of a double diffusion encoding (DDE) MRI method to estimate and map the axon diameter distribution (ADD) within an imaging volume. A variety of biological processes, ranging from development to disease and trauma, may lead to changes in the ADD in the central and peripheral nervous systems. Unlike previously proposed methods, this ADD experimental design and estimation framework employs a more general, nonparametric approach, without a priori assumptions about the underlying form of the ADD, making it suitable to analyze abnormal tissue. In the current study, this framework was used on an ex vivo ferret spinal cord, while emphasizing the way in which the ADD can be weighted by either the number or the volume of the axons. The different weightings, which result in different spatial contrasts, were considered throughout this work. DDE data were analyzed to derive spatially resolved maps of average axon diameter, ADD variance, and extra-axonal volume fraction, along with a novel sub-micron restricted structures map. The morphological information contained in these maps was then used to segment white matter into distinct domains by using a proposed k-means clustering algorithm with spatial contiguity and left-right symmetry constraints, resulting in identifiable white matter tracks. The method was validated by comparing histological measures to the estimated ADDs using a quantitative similarity metric, resulting in good agreement. With further acquisition acceleration and experimental parameters adjustments, this ADD estimation framework could be first used preclinically, and eventually clinically, enabling a wide range of neuroimaging applications for improved understanding of neurodegenerative pathologies and assessing microstructural changes resulting from trauma.
我们报告了一种双扩散编码(DDE)MRI方法的开发,用于估计和绘制成像体积内的轴突直径分布(ADD)。从发育到疾病和创伤等各种生物过程,都可能导致中枢和外周神经系统中ADD的变化。与先前提出的方法不同,这种ADD实验设计和估计框架采用了更通用的非参数方法,无需对ADD的潜在形式进行先验假设,使其适用于分析异常组织。在当前研究中,该框架应用于离体雪貂脊髓,同时强调了ADD可以通过轴突数量或体积进行加权的方式。在整个研究过程中都考虑了导致不同空间对比度的不同加权方式。对DDE数据进行分析,以得出平均轴突直径、ADD方差和轴突外体积分数的空间分辨图,以及一种新颖的亚微米受限结构图。然后,利用一种具有空间连续性和左右对称性约束的k均值聚类算法,将这些图中包含的形态学信息用于将白质分割成不同的区域,从而得到可识别的白质轨迹。通过使用定量相似性度量将组织学测量结果与估计的ADD进行比较,验证了该方法,结果显示两者吻合良好。随着进一步的采集加速和实验参数调整,这种ADD估计框架可以首先在临床前使用,最终在临床上使用,从而实现广泛的神经成像应用,以更好地理解神经退行性病变并评估创伤导致的微观结构变化。