Buckley Lauren B, Huey Raymond B
Department of Biology, University of Washington, Seattle, WA 981951800, USA
Department of Biology, University of Washington, Seattle, WA 981951800, USA.
Integr Comp Biol. 2016 Jul;56(1):98-109. doi: 10.1093/icb/icw004. Epub 2016 Apr 28.
SynopsisUnderstanding the biological impacts of extreme temperatures requires translating meteorological estimates into organismal responses, but that translation is complex. In general, the physiological stress induced by a given thermal extreme should increase with the extreme's magnitude and duration, though acclimation may buffer that stress. However, organisms can differ strikingly in their exposure to and tolerance of a given extreme temperatures. Moreover, their sensitivity to extremes can vary during ontogeny, across seasons, and among species; and that sensitivity and its variation should be subject to selection. We use a simple quantitative genetic model and demonstrate that thermal extremes-even when at low frequency-can substantially influence the evolution of thermal sensitivity, particularly when the extremes cause mortality or persistent physiological injury, or when organisms are unable to use behavior to buffer exposure to extremes. Thermal extremes can drive organisms in temperate and tropical sites to have similar thermal tolerances despite major differences in mean temperatures. Indeed, the model correctly predicts that Australian Drosophila should have shallower latitudinal gradients in thermal tolerance than would be expected based only on gradients in mean conditions. Predicting responses to climate change requires understanding not only how past selection to tolerate thermal extremes has helped establish existing geographic gradients in thermal tolerances, but also how increasing the incidence of thermal extremes will alter geographic gradients in the future.
理解极端温度的生物学影响需要将气象估计转化为生物体的反应,但这种转化很复杂。一般来说,给定热极端所诱导的生理应激应随极端的强度和持续时间增加,尽管驯化可能会缓冲这种应激。然而,生物体在暴露于给定极端温度以及对其耐受性方面可能存在显著差异。此外,它们对极端温度的敏感性在个体发育过程中、不同季节以及不同物种之间可能会有所不同;而且这种敏感性及其变化应该受到选择的影响。我们使用一个简单的数量遗传模型,并证明热极端——即使频率很低——也会对热敏感性的进化产生重大影响,特别是当极端温度导致死亡或持续性生理损伤时,或者当生物体无法利用行为来缓冲对极端温度的暴露时。尽管平均温度存在重大差异,但热极端可以促使温带和热带地区的生物体具有相似的热耐受性。实际上,该模型正确地预测,澳大利亚果蝇的热耐受性纬度梯度应该比仅基于平均条件梯度所预期的要浅。预测对气候变化的反应不仅需要了解过去对热极端耐受性的选择如何有助于建立现有的热耐受性地理梯度,还需要了解热极端事件发生率的增加将如何在未来改变地理梯度。